J.S. UNIVERSITY SHIKOHABAD (FIROZABAD)

BACHELOR OF SCIENCE (B.Sc.)

(THREE YEAR DEGREE COURSE)

CHEMISTRY

1. Applicability

The ordinances shall apply to all four-year, eight semesters, Under-Graduate (UG) Programmes leading to the award of **B.Sc. Chemistry** Degree in the **J.S. University, Shikohabad Firozabad** from the session 2021-2022. The ordinances shall be read in conjunction with the directions issued by the University which are appended with these ordinances.

2. Definitions of Key Words

- a) Academic Year: Two consecutive semesters. One odd and one even semester shall constitute one academic year.
- **b)** Choice Based Credit System (CBCS): The CBCS provides choice for students to select from the prescribed courses (core, elective, value added, co-curricular, skill development intradepartmental and inter-departmental.
- c) Course: Sometimes referred to, as 'papers' is a component of a programme. A course is designed to comprise lectures/tutorials/laboratory work/field work/outreach activities/project work/vocational training/viva/seminars/term papers/assignments/presentations/self-study etc. or a combination of some of these.
- **d**) **Credit:** A unit by which the weightage of course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (lecture/tutorial) or two hours of practical work/field work per week.
- e) Semester Grade Point Average (SGPA): It is a measure of academic performance in a semester
- **f)** Cumulative Grade Point Average (CGPA): It is a measure of overall cumulative academic performance of a student.
- **g)** Letter Grade: It is an index of the performance of students in a said course. Grades are denoted by letters O, A⁺, A , B⁺, B, C, P, F and AB.
- **h**) **Grade Point:** It is a numerical value allotted to marks obtained in a course.
- i) **Grade/Score Card:** The grade cards will be given to all students at the end of any semester of a program and also on improvement of grades. It will display the course details (code, title, number of credits) grade points obtained in each course, and SGPA/CGPA.
- **j) Programme:** An academic programme leading to award of a Certificate. Diploma, Degree or Degree with Research.
- k) Faculty: Student own faculty will be the faculty from which she/he selects two major courses.
- Semester: Each semester will normally consist of academic work equivalent to 90 working day (15 weeks) including examination/evaluation. The odd semester will be from July/August to December and even semester from January to May/June in every academic year.
- **m**) **Transcript:** The Transcript issued on successful completion of all semesters of a program will display the course details (code, title, number of credits) and grade points obtained in each course, and CGPA.

3. Types of Courses

- a) Core (Major) Course:- Core (Major) course is a course which is compulsory for a student to study, if she/he has chosen that subject as Major.
- **b)** Elective (Minor) Course:- Elective (Minor) course is course which can be chosen from a pool of elective courses offered in the programme. It can be a major course of other subject.
- c) Credited Value- Added Course: The courses add value through enhanced employability skills and have credits assigned to them and may be offered through Vocational and Co-curricular courses. These courses will be counted for calculation of SGPA/CGPA.

- d) Non- credited Value-Added Course: The courses may be offered to add value through enhanced employability skills but do not have credits assigned to them. The performance in these courses shall not be counted for computation of 'SGPA' and 'CGPA'.
- e) Vocational/Skill development Course: These course will be offered by the Department/Colleges in different Faculties as value added courses for enhancing employability. They will be of two types' Individual nature and progressive nature. There will be a capping on the maximum number of students in a particular course as specified by the department/colleges concerned.
- **f) Co-curricular Course:** The courses will be offered by the Departments/Institutes in different Faculties of the University as value added courses for overall personality development in first six semesters. They will be fixed for each semester as prescribed in regulations / guidelines of University New education Policy (NEP). They will be qualifying in nature and their grades will not be added in CGPA.
- **g**) **Internship:** All students of Under Graduate Programme shall be required to undertake an Internship/Them-Paper during the summer vacation between fourth and fifth semester, carrying credits as specified by BOS.
- h) Online courses / MOOCs: They student will have the freedom to choose a similar course of equal credits from MOOCs, SWAYAM portal of UGC/Ministry of education in place of a Course offered in the semester as specified by the Department. MOOC/SWAYAM courses may be opted depending upon the availability on the government approved portal. Online papers credit maximum of 20% of the total credits required for that courses could be earned in minor/elective papers from this mode and those credits have to be added by the University in their SGPA/CGPA.
- i) **Dissertation/Major Project:** All students of UG Programmes shall be required to prepare a Dissertation/Major Project in the eight semester.

4. Minimum Eligibility Requirement and process of Admission

- **4.1 Minimum Eligibility Requirement:** A certificate of successfully completing Class XII or equivalent from any Board recognized by the State or Centre Government shall constitute the minimum prerequisite requirement for admission to the under graduate degree programmes. The respective regulations may lay down additional or higher requirements.
- **4.2 Admission Process:** The admission of Indian Nationals shall be based on entrance test or academic merit or a combination of the two and reservation /weightage in admissions shall be as per the UP-Government rules. However, Foreign Nationals applying for admission through authorised channels shall be eligible for direct admission with a maximum capping as per University norms.

5. Program Duration and Credit Requirements

- a) The under graduate degree programmes shall be spread over eight semesters (4 academic years).
- **b**) The maximum duration for completing the certificate in faculty is 4 years. Diploma in faculty is 3 years after certificate, Bachelor of faculty is 3 years after diploma and Bachelor (research) in faculty is 2 years after Bachelor of faculty in under graduate degree programme. These will be consecutive academic years.

6. Course Structure

The course structure and course outlines of the under graduate degree programmes shall be as per the respective regulations recommended by the respective board of studies and ratified by the competent authority.

7. Attendance Requirement

Students with less than 75% attendance shall not be eligible to appear in the End of Semester Examination. However, in exceptional cases, the Principal/ Vice chancellor may grant a relaxation in the minimum attendance requirement by not more than 15% on the basis of genuine reason.

8. Examination(s) and Assessment /Evaluation:

8.1a In each semester from Vth to VIIIth Student have to do Research project, In third year (Vth and VIth Semester) it will be a major project and in fourth year (VIIth and VIIIth) it will be a major project. This project should be from any of the two subjects taken for that semester. This project can be interdisciplinary or in the form of Industrial training /Internship/ or Survey. Research project will be done under supervision of one faculty member; the student can opt for another supervisor from either industry, company technical institutes of research institutes.

8.2 b Student in the end of each semester will submit report/Dissertation which will be evaluated by external examiner (recommended by BOS) and supervisor with 75 marks. Continuous internal evaluation (CIA) of 25 marks in that semester will be done by supervisor. In V &VI semester it will be qualifying only. In VIIth and VIIIth semester it will be of 4 credits and will be used in calculation of CGPA. The Principal/ Head/ Director/ Dean shall convene and coordinate the process with Practical Examinations of that department.

- **8.2** In all credit courses (other than Internship/ survey/minor project report and Disscrtation/major Project), there shall be continuous internal assessment of the students and semester end examination as per the scheme of examination.
- **8.3** The semester end examination shall have a weightage of 75 marks. Questions for this examination shall be set by a panel of examiners approved by the Board of studies and duly moderated by the Moderation Committee. The scheme of examination shall ensure that no student has to appear for examinations in more than two courses on any single day.
- **8.4** The continuous internal assessment shall have a weightage of 25 marks and shall be based on assignments, class test, quizzes etc. as specified by Board of studies of the subject concerned.
- **8.5** It shall be the duty of the Teacher teaching a particular course, to conduct internal assessment. In case more than one teacher is sharing the teaching work in a course, each teacher shall evaluate independently and a weighted average would be taken.
- 8.6 For the ease of computation, the assessment/evalution of each course will be out of a maximum of 100 marks (25 for internal assessment and 75 for end of semester examination) irrespective of number of credits allotted to the course. The marks shall be converted to grades

8.7 Vocational Courses

8.7 a. Memorandum of Understanding

- 1. Colleges are required to sign the MOUs at the local level.
- 2. Educational Institutions will contact nearby industries, I.T.I., Polytechnics, Engineering Colleges, Artisans, Registered Enterprises, Specialists for conducting vocational courses.
- 3. In order to connect with Government run Vocational Courses/Training/Internships, Educational Institutions will coordinate with the concerned departments.
- 4. The safety of a student in workplace should be considered while signing the MOU.
- 5. All possible efforts should be made to pay student honorarium, as per rules, to students during their training/internship.

8.7 b. Time Table

Training/Internship could be done during holidays or after college hours. Alternatively, a day in a week may be fixed for this activity.

8.7 c. Seat Allocation

Different Courses should be prepared by the college on the number of enrolled students. The number of seats in each course must be decided in consultation with the skill partner.

8.7 d. Examination

- 1. Theory examination (1 credit) will be conducted by the college, while the training/internship examination (2 credit) will be conducted by the skill partner or by the collage wherever the facility exists.
- 2. Skill partner/College may evaluate the skills of the student either on the basis of the work done during the training/internship or on the basis of offline/online examination.
- 3. Colleges will upload the marks on the portal in time after obtaining theory and skill marks.
- 4. The details of the Vocational Course will be entered in the marksheet/degree issued by the university.
- 5. In addition to it, college and skill partner may issue a joint certificate to the student.

8.7 e Syllabus

- 1. Colleges will prepare the syllabus for each vocational course. Which would be then duly approved by the Syllabus Committee, Academic Council and Executive Council as per existing rules.
- 2. Syllabus would be formulated with the help of college/skill partner/skill development council as per the guidelines given by UGC/NSQF.
- **3.** In trades, for which syllabi made by UGC/NSQF/Skill Development Council/Government Department are available, priority should be given to adoption of such syllabi so that the support of the respective bodies may be obtained during the time of placement/internship.
- 4. In different subjects, where the syllabus has been prepared by the head of the

Department/Teacher, the ratio of the General Theory of Skill/ Training/Internship/Lab will be 40:60, and for such courses the arrangements to sign MOU with the skill partners will be made by the collage administration.

5. The theory component shall be of credit (15 hours) and the skill component shall be of two credits (30 hours per credit). Thus the vocational course will be a 3 credit course in which 15 hours of theory (1 credit) and 60 hours of training/internship/lab (2 credits) will be there.

8.7 f Nature of the Syllabus

1. Syllabus can be of two types:

i. **Individual Nature**- A syllabus that would be completed in one semester. ii. **Progressive Nature**- A syllabus the complexity/specialization would increase with each semester but will be complete in itself in each semester.

2. Students shall choose the course/syllabus as per their choice and convenience.

8.7 g Credit

A student will have to earn a minimum of three credits from vocational courses in each semester, which means six credits every year. Students may choose a vocational course with more than required credits and deposit them, but in a year six credits/in two years 12 credits will be used to obtain certificate/diploma/degree.

9.1 The formula adopted by the University for conversion of CGPA to equivalent percentage of marks is given below-

Percentage of Marks = (CGPA*10)

9.2 The following percentage to Letter Grade / Grade Points conversion scheme will be followed

Percentage	Equivalent Letter	Equivalent Grade Point
	Grade	
>=95%	0	10
>=85% and<95%	A+	9
>=75% and <85%	А	8
>=65% and <75%	B+	7
>=55% and <65%	В	6
>=45% and <55%	С	5
>=35% and <45%	Р	4
< 35%	F	0
NA	AB	0

9.3 Computation of Semester Grade Point Average (SGPA) and Cumulative Grade

Point Average (CGPA)

a) The SGPA is the ratio of sum of the product of the number of credits with the grade points scored a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student in a semester, i.e SGPA (Si)=∑(Ci×Gi) / ∑Ci

Where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the course.

b) The CGPA is also calculated in the same manner taking into account all the courses undergone by a student over all the semesters of a programme, i.c.

 $CGPA = \sum (Ci \times Si) / \sum Ci$

Where Si is the SGPA of the ith semester and Ci is the total number of credits in that semester.

The SGPA and CGPA shall be given be given upto 2 decimal points without rounding off. For example, if the SGPA/CGPA is 5.2434, the final CGPA will be 5.24. Similarly, if the SGPA/CGPA is 5.2498 than also the final CGPA to be reflected in the transcript will be 5.24.

9.4 Grade Point Requirement / Minimum Standard

- a) A student, in order to be eligible for the award (i) passed all the prescribed courses as laid down and completed the minimum credit requirement of the programme already defined in the ordinance; (ii) she/he has obtained a CGPA of 4.0 at the end of the programme.
- b) The grade points- division mapping for UG programs will be as follows-

Grade Point Range	Division
>=6.0 and above	First
>=4.5 and <6.0	Second
>=4.0 and <4.5	Third
>4.0	Fail

- c) A student shall be deemed to have cleared a course only if (i) he/she has participated in the internal assessment and has secured an overall grade at least 'P' or higher and (ii) if she/he has secured a grade at least 'P' or higher in the endsemester examination (for courses having end-semester examination). A student obtaining Grade 'F' shall be considered fail and will be required to reappear in the examination.
- d) If a student fails to clear a selected course than he/she shall be allowed to clear another similar credit course in lieu thereof or the same course.
- e) In case a student earns extra credits by clearing courses in addition to the minimum prescribed for the programme, all the courses and their grades will reflect in the

grade sheet. However, for the purposes of calculating the Cumulative Grade Point Average (CGPA) in the final semester, only his/her best grade will be taken into account such that the minimum credit requirements for the programme are fulfilled.

- f) For awarding medals or for declaring the toppers in the course if the student gets the same CGPA, it should be resolved by considering the number of times a student has obtained higher SGPA but if it is not resolved even at this stage, the number of times a student has obtained higher grades in a paper like O, A⁺ etc should be taken into account in rank ordering of the students in a programme. However in case of further discrepancies the final decision lies at the discretion of the head of the Department/ Controller of Examination/Examination Committe.
- g) Transcript (Format) based on the above recommendations on letter grade, grade points and SGPA and CGPA may be used for each semester and a consolidated transcript indicating the performance of all semesters in the final semester transcript of the course.

Course	Credit	Letter Grade	Grade Point	Credit Point (Credit
		Orace		×Grade)
Course 1	4	А	8	4*8=32
Course 2	4	А	9	4*9=36
Course 3	3	В	6	3*6=18
Course 4	2	С	5	2*5=10
Course 5	4	F	0	4*0=0
	Total (∑Ci)=17			Total
				$(\sum (Ci \times Gi)) = 96$

9.5 Illustration of calculation of SGPA

Thus SGPA=96/17=5.64

Illustration of calculation of CGPA

Semester 1	Semester 2	Semester 3	Semester 4
Credit:17	Credit:20	Credit: 22	Credit: 22
SGPA: 5.64	SGPA: 6.08	SGPA:4.9	SGPA:7.22

Thus, CGPA = $(5.64 \times 17 + 6.08 \times 20 + 4.9 \times 22 + 7.22 \times 22)/81 = 5.97$ Hence, equivalent percentage = $(5.97 \times 10) = 59.7$ And the Division will be Second

9.6 In co curricular courses a student has to score 40 (Forty) % marks for clearing it. Grades will be indicated in the grade sheet but they will not be counted for evaluating CGPA.

9.7 Examination, Promotion and Reappearing Rules:

- a) A student obtaining grades 'P' to 'O' (grade point 4 or higher) in any course shall be considered PASS in that course.
- b) For non-credit courses 'Satisfactory' (grade 'P' to 'O') or 'Unsatisfactory' (Grade 'F' or 'AB' shall be indicated instead of the letter grade and these will not be counted for the computation of SGPA/CGPA.
- c) All students shall be promoted automatically from odd to even semesters but for promotion from even to odd semester i.e from current year to next year. It may be that s/he earns atleast 75% credits of all the credits of current year. S/He may be promoted in this manner till VIth Semester (IIIrd year). Further promotion (to VIIth Sem) may not be allowed till s/he clears all the previous semester credits.
- d) Those students who are NOT eligible for promotion shall have reappear in the end semester examination of those courses in the semester(s) in which the student has failed along with those courses in which he/she wishes to improve, within the maximum stipulated time period allowed to complete the program. The grades of internal assessment shall carry forward in such cases.
- e) Those students who are eligible for promotion and wish to improve their grades, may choose to reappear in the end of semester examination to improve their grades, within the maximum stipulated time period allowed to complete the program. The grades of internal assessment shall carry forward in such cases.
- f) A Student may be allowed to re-register for a semester, within the maximum stipulated time period allowed to complete the program, provided he/she satisfies one of the following conditions. In such a case there shall be fresh assessment of internal evaluation:
 - i. The student is declared fail.
 - ii. The student did not appear in a semester examination or he/she was not granted permission to appear in the examination.
 - iii. The student had been detained by the University and subsequently has been permitted to take re-admission.
 - iv. The student has own desire to abandon the performance of the semester and wishes to repeat.
- g) Those students who reappear in any course/s in any semester of re-register for a semester shall have to pay the prescribed fee.
- h) Cases of use of unfair means in the examination shall be dealt with as per the rules and regulations of the University.
- i) Challenge evaluation shall be permitted as rules/orders of the University.

9.8 Grade Card:

A grade card shall be issued to each student at the end of every semester.

9.9 Transcript:

A Transcript shall be issued to a student on successful completion of the programme on request as per rules.

9.10 Withholding of Grade Card/Transcript

The Grade Card/Transcript of a student shall be withheld if he/she has not paid his/her dues, or if there is a case of indiscipline pending against him/her.

10. Exit option and award of Under Graduate Degree

10.1 In case the student wishes to leave after completion of one year of any Under Graduate Degree Programme, he/she shall be eligible for award of a Certificate in faculty, provided the student fulfils the following conditions:

- a) Has pursued the prescribed courses of study and has earned 46 credits as prescribed under the relevant regulations within four academic years without 'F' or 'AB' in any course.
- b) Obtained a minimum CGPA of 4.0.
- c) Paid all the dues of the University.
- d) No disciplinary proceedings are pending against him/her.
- e) Any other condition, as notified by the competent authority of the university.

10.2 In case the student wishes to leave after completion of two years of any Under Graduate Degree Programme, he/she shall be eligible for award of a Diploma in faculty, provided the student fulfils the following conditions:

a) Has pursued the prescribed courses of study and has earned 92 credits as prescribed under the relevant regulations within six (three years after earning certificate) academic years without 'F' or 'AB' in any course. b) Obtained a minimum CGPA OF 4.0

- c) Paid all the dues of the University.
- d) No disciplinary proceedings are pending against him/her.
- e) Any other condition, as notified by the competent authority of the University.

10.3 In case the student wishes to leave after completion of three year of any Under Graduate Degree Programme, he/she shall be eligible for award of a Bachelor's Degree in faculty, provided the student fulfils the following conditions:

- a) Has pursued the prescribed courses of study and has earned 132 credits as prescribed under the relevant regulations within ten (three years after diploma in faculty) academic years without 'F' or 'AB' in any course.
- b) Obtained a minimum CGPA of 4.0.
- c) Paid all the dues of the University.
- d) No disciplinary proceedings are pending against him/her.
- e) Any other condition, as notified by the competent authority of the university.

10.4 On completion of four years of any Under Graduate Degree Programme, he/she shall be eligible for award of a Bachelor's Degree (Chemistry) with Research in faculty, provided the student fulfils the following conditions:

- a) Has pursued the prescribed courses of study and has earned 184 credits as prescribed under the relevant regulations without 'F' or 'AB' in any course after Bachelor's degree.
- b) Obtained a minimum CGPA of 4.0.
- c) Paid all the dues of the University.
- d) No disciplinary proceedings are pending against him/her.
- e) Any other condition, as notified by the competent authority of the university.

10.5 Students holding a Certificate of Diploma can apply for lateral entry into the second/third year respectively of an Under Graduate Degree Programme through the laid down admission process for the purpose as notified by the university.

11.1 In Programmes governed by professional councils such as AICTE, MCI, BCI and NCTE etc the norms decided by Board of studies and other competent bodies in light of recommendations by the statuary councils shall apply.

12. Interpretation clause

In case of any issue of interpretation arising during the course of implementation of these ordinances or in case of any unforeseen circumstance, decision of the Vice-Chancellor/Examination committee shall be final.

Subject Subject I II	Subject III	Subject IV	Vocational	CO- Curricular	Industrial Training/Survey/R esearch Project	(Minimum Credits) For the year	Cumulative (Minimum Credits)
-------------------------	----------------	------------	------------	-------------------	--	--------------------------------------	------------------------------------

YEAR WISE STUCTURE OF GRADUATE COURSES

		Major	Major	Major	Minor Elective	Minor	Minor	Major	Required for Award of
		4/5/6	4/5/6	4/5/6	4/5/6	3		4	Certificate/Diploma/
		Credits	Credits	Credits	Credits	Credits		Credits	Degree
Year	Sem.	Own	Own	Own/Ot	Other	Vocational/	Co-	Inter/Inrta	
		Faculty	Faculty	her	Subject/Fa	skDevelopme	Curricular	Faculty related to	
				Faculty	culty	nt Course	course (Qualifyin	main Subject	
							g)		
		Th-1(6) or	Th-1(6) or $Th = 1(4) + P$	Th-1(6) or					
	Ι	Th1(4)+Pr act-1(2)	Th1(4)+Pr act-1(2)	Th1(4)+Pr act-1(2)		1	1		
		act-1(2)	act-1(2)	act-1(2)					
		Th-1(6) or	Th-1(6) or	Th-1(6) or					
	п	Th1(4)+Pr	Th1(4)+Pr	Th1(4)+Pr		1	1		
		act-1(2)	act-1(2)	act-1(2)					
		Th-1(6) or	Th-1(6) or	Th-1(6) or					
	ш	Th1(4)+Pr	Th1(4)+Pr	Th1(4)+Pr		1	1		
		act-1(2)	act-1(2)	act-1(2)		1	1		
		Th-1(6) or	Th-1(6) or	Th-1(6) or					
	IV	Th1(4)+Pr	Th1(4)+Pr	Th1(4)+Pr		1	1		
	1 V	act-1(2)	act-1(2)	act-1(2)		1	1		
		Th-2(5) or	Th-2(5) or						
	v	Th 2(3) or $Th2(4)+Pr$	Th 2(3) or Th2(4)+Pr					Ι	
	v	act-1(2)	act-1(2)				1	(Qualifying)	
		Th-2(5) or	Th-2(5) or					т	
	VI	Th2(4)+Pr act-1(2)	Th2(4)+Pr act-1(2)				1	(Qualifying)	
		act-1(2)	act-1(2)					(Qualitying)	
		Th-4(5) or						1	
	VII	Th-						(4)	
		(4)+Prac t-1(4)						1	
		Th-4(5) or						1	
		$Th^{-4}(3)$ of Th4(4)+Pr						(4)	
	VIII	act-1(4)						1	
		. /							

Format for syllabus development of Skill development course

Title of course-							
Nodal Department	of HEL to run course						
Broad Area/Sector	:-						
Sub Sector-							
Nature of course-	Independent/Progressi	ve					
Name of suggestiv	e Sector Skill Council						
Aliened NSQF lev	el						
Expected fees of th	he course-Free/Paid						
Stipend of student	expected from industr	у					
Number of Seats							
Course Code				Credits- 03(1 Theo	ry, 2 Practical)		
Max/Marks100	Minimum Marks	5			•		
	Skill Partner (Please aining/internship/OJT	Specify,Name of i	ndustry,company				
	bected Fields of Occup leting this course in (P						
Syllabus							
Unit	Topics	General/Skill Component	Theory/ Practical/OJT/ Internship/ Training	No of theory hours (Total-15 Hours= 1 credit)	No of skill Hours (Total-60 Hours= 2 credits)		
Ι							
II							
III							
IV							
V							
VI Suggested Reading	16.				•		
	platforms/ web links f	or reading-					
	ernship/Training/Skill						
	ous Evaluation Method						
Course Pre-requisi	ites:						
 No pre 	-requisite required, op	en to all					
	ly this course, a studer						
	ressive, to study this c	ourse a student m	ust have passed pre-	vious courses of this s	series.		
Suggested equivale							
Any remarks/ sugg	gestions:						
 Notes: Number of units in Theory/Practical may vary as per need Total credits/semester-3 (it can more credits, but students will get only 3 credit/ semester or 6 credits/ year Credits for Theory =01 (Teaching Hours= 15) Credits for Internship/OJT/Training/Practical=02 (Training Hours= 60) 							

Programme Education Objectives (PEOs)

The PEOs of the B.Sc. program Chemistry are as follows:

PEO 1: Chemistry graduates will be well prepared for successful careers in the profession at an industry and/or in government in one or more of discipline of chemistry.

PEO 2: Chemistry graduates will be academically prepared to become licensed professional chemists in due course and will contribute effectively in serving the society.

PEO 3: Chemistry graduates will be engaged in professional activities to enhance their own achievement and simultaneously contribute in service of humankind.

PEO 4: Chemistry graduates will be successful in higher education in Chemistry.

PEO 5: Chemistry graduates will provide leadership quality to work in all kind of circumstances, diverse environment such as interdisciplinary and multidisciplinary learning systems.

BACHELOR OF SCIENCE IN CHEMISTRY

(Semester Pattern) Choice Based Credit System Syllabus Three Years Programme

COURSE OF STUDIES

(AS per U.G.C. Guidelines)

DEPARTMENT OF CHEMISTRY J.S. UNIVERSITY, SHIKOHABAD

Semester-wise Titles of the Papers in B.Sc. Chemistry

Year	Sem.	Course Code	Paper Title	Theory/Practical	Credits
		C	ertificate in Bioorganic and Medi	icinal Chemistry	
1	Ι	B020101T	Fundamentals of Chemistry	Theory	4
		B020102P	Quantitative Analysis	Practical	2
	II	B020201T	Bioorganic and Medicinal Chemistry	Theory	4
		B020202P	Biochemical Analysis	Practical	2
		Diploma in	Chemical Dynamics and Analyti	cal Techniques	
2	III B020301T Chemical D Chemistry	Chemical Dynamics & Coordination Chemistry	Theory	4	
_		B020302P	Physical Analysis	Practical	2
	IV	B020401T	Quantum Mechanics and Analytical Techniques	Theory	4
		B020402P	Instrumental Analysis	Practical	2
			Degree in Bachelor of Science	9	
3	V	B020501T	Organic Synthesis-A	Theory	4
		B020502T Rearrangements and Chemistry of Grou Elements		Theory	4
		B020503P	Qualitative Analysis	Practical	2
		B020504R	Research Project	Project	3
	VI	B020601T	Organic Synthesis-B	Theory	4
		B020602T	Chemical Energetics and Radiochemistry	Theory	4
		B020603P	Analytical Methods	Practical	2
		B020604R	Research Project	Project	3

Purpose of the Program

The purpose of the undergraduate chemistry program at the university and college level is to provide the key knowledge base and laboratory resources to prepare students for careers as professionals in various industries and research institutions.

Program's Outcomes

- 1. Students will have a firm foundation in the fundamentals and application of current chemical and scientific theories including those in analytical, Inorganic, Organic and Physical Chemistries.
- 2. Students will be able to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.
- 3. Students will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- 4. Students will be able to explore new areas of research in both chemistry and allied fields of science and technology.
- 5. Students will appreciate the central role of chemistry in our society and use this as a basis for ethical behavior in issues facing chemists including an understanding of safe handling of chemicals, environmental issues and key issues facing our society in energy, health and medicine.
- 6. Students will be able to explain why chemistry is an integral activity for addressing social, economic, and environmental problems.
- 7. Students will be able to function as a member of an interdisciplinary problem solving team.

PROGRAM SPECIFIC OUTCOMES (PSOS)

	CEDTIFICATE IN BIOODCANIC AND MEDICINAL CHEMISTRY
T ² 4	CERTIFICATE IN BIOORGANIC AND MEDICINAL CHEMISTRY
First Year	Certificate in Bioorganic and Medicinal Chemistry will give the student a basic knowledge of all the fundamental principles of chemistry like molecular polarity, bonding theories of molecules, Periodic properties of more than 111 elements, mechanism of organic Reactions, Stereochemistry, basic mathematical concepts and computer knowledge, chemistry of carbohydrates, proteins and nucleic acids: medicinal chemistry, synthetic polymers, synthetic dyes, Student will be able to do to qualitative quantitative and bio chemical analysis of the compounds in the laboratory. This certificate course is definitely going to prepare the students for various fields of chemistry and will give an insight into all the branches of chemistry and enable our students to join the knowledge and available opportunities related to chemistry in the government and private sector services particularly in the field of food safety, health inspector, pharmacist etc. Have a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving
	with a molecular perspective.
Second Year	DIPLOMA IN CHEMICAL DYNAMICS AND ANALYTICAL TECHNIQUES
	Diploma in Chemical Dynamics and Analytical Techniques will provide the theoretical as well as practical knowledge of handling chemicals, apparatus, equipment and instruments. The knowledge about feasibility and velocity of chemical reactions through chemical kinetics, chemical equilibrium , phase equilibrium, kinetic theories of Gases , solid and liquid states, coordination chemistry, metal carbonyls and bioinorganic will enable the students to work as chemists in pharmaceutical industries. The knowledge about atomic structure, quantum mechanics, various spectroscopic tools and separation technique will make the students skilled to work in industries: Achieved the skills required to succeed in the chemical industry like cement industries, agro product, paint industries, rubber industries, petrochemical industries, food processing industries, Fertilizer industries, pollution monitoring and control agencies etc. Got exposures of a breadth of experimental techniques using modern instrumentation Learn the laboratory skills and safely measurements to transfer and interpret knowledge entirely in the working environment. monitoring of environment issues: monitoring of environmental pollution problems of atmospheric sciences, water chemistry and soil chemistry and design processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
Third Year	DEGREE IN BACHELOR OF SCIENCE
	 Degree in Bachelor of Science programme aims to introduce very important aspects of modern day course curriculum, namely, chemistry of hydrocarbons, alcohols, carbonyl compounds, carboxylic acids, phenols, amines, heterocyclic compounds, natural products main group elements, qualitative analysis, separation techniques and analytical techniques. It will enable the students to understand the importance of the elements in the periodic table including their physical and chemical nature and role in the daily life and also to understand the concept of chemistry to inter relate and interact to the other subject like mathematics, physics, biological science etc. Upon completion of a degree, chemistry students are able to employ critical thinking and scientific inquiry in the performance, design, interpretation and documentation of laboratory experiments, at a level suitable to succeed at an entry-level position in chemical industry or a chemistry graduate program Various research institutions and industry people in the pharmaceuticals, polymers, and food industry sectors will surely value this course.

			Sub	oject: Chemistry			Total Credits of the
Year	Sem.	Theory Paper	Units	Practical Paper	Units	Research Project	subject
1	Ι	Fundamentals of Chemistry	 Molecular polarity and Weak Chemical Forces Simple Bonding theories of Molecules Periodic properties of Atoms Recapitulation of basics of Organic Chemistry Mechanism of Organic Reactions Stereochemistry Basic Computer system (in brief) Mathematical Concepts for Chemistry 	Quantitative Analysis	 Water Quality analysis Estimation of Metals ions Estimation of acids and alkali contents Estimation of inorganic salts and hydrated water 	Nil	4+2 = 6
	II	Bioorganic and Medicinal Chemistry	 Chemistry of Carbohydrates Chemistry of Proteins Chemistry of Nucleic Acids Introductory Medicinal Chemistry Solid state Introduction to Polymer Kinetics and Mechanism of Polymerization Synthetic Dyes 	Biochemical Analysis	 Qualitative and quantitative analysis of carbohydrates Qualitative and quantitative analysis of Proteins, amino acids and Fats Determination and identification of Nucleic Acids Synthesis of simple drug molecules. 	Nil	4+2 = 6
2	Ш	Chemical Dynamics & Coordination Chemistry	 Chemical kinetics Chemical Equilibrium Phase Equilibrium Kinetic theories of Gases Liquid states Coordination Chemistry Theories of Coordination Chemistry Inorganic Spectroscopy and Magnetism 	Physical Analysis	 Strengths of Solution Surface tension and viscosity of pure liquids Boiling point and Transition temperature Phase Equilibrium 	Nil	4+2 = 6
	IV	Quantum Mechanics and Analytical Techniques	 Atomic Structure Elementary Quantum Mechanics Molecular Spectroscopy UV-Visible Spectroscopy Infrared Spectroscopy ¹H-NMR Spectroscopy Introduction to Mass Spectrometry Separation Techniques 	Instrumental Analysis	 Molecular Weight Determination Spectrophotometry Spectroscopy Chromatographic Separations 	Nil	4+2 = 6
	V	Organic Synthesis-A	 Alkane and Cycloalkanes Alkenes Alkynes Arenes and Aromaticity Alcohols 	Qualitative Analysis	 Inorganic Qualitative Analysis Elemental analysis and identification of functional groups Separation of organic Mixture Identification of organic compounds 	Research Project	4+4+2+3 =13

Rearrangements and Chemistry of Group Elements	 6. Phenols 7. Ethers and Epoxides 8. Organic Halides 1. Rearrangements 2. Catalysis 3. Chemistry of the Main Group Elements 4. Chemistry of Transition Elements 5. Chemistry of Lanthanides 6. Chemistry of Actinides 7. Metal Carbonyls 8. Bioinorganic Chemistry 				
Organic Synthesis-B VI	 Reagents in Organic synthesis Organometallic Compounds Aldehydes and Ketones Carboxylic acids and their Functional Derivatives Organic Synthesis <i>via</i> Enolates Organic Compounds of Nitrogen Heterocyclic Compounds Natural Products 	Analytical Methods	 Gravimetric Analysis Paper Chromatography Thin Layer Chromatography Thermochemistry 	Research Project	4+4+2+3
Chemical Energetics and Radiochemistry	 Thermodynamics-I Thermodynamics-II Electrochemistry Ionic Equilibrium Photo Chemistry Colligative Properties of Solutions Surface Chemistry Radiochemistry 				=13

COURSE				SUBJECT: C	HEMISTRY		Total Credits of
Year	Sem.		Paper Title	Prerequisite for paper	Elective For Major Subject	Hours per Semester	the subject
Certificate in Bioorganic and Medicinal	Ι	Theory-1	Fundamentals of Chemistry	Chemistry in 12 th	Yes Open to all	60	4
Chemistry		Practical- 1	Quantitative Analysis	Chemistry in 12 th	Yes Open to all	60	2
		Theoty-1	Bioorganic and Medicinal Chemistry	Passed Sem-I, Theory paper-1	Yes Zoo/Bot./Physics/Math/Comp Sci	60	4
	II	Pracical-2	Biochemical Analysis	Opted Sem-II, Theory Ppaer-1	Yes Zoo/Bot./Physics/Math/Comp Sci.	60	2
Diploma in Chemical Dynamics and Analytical	III	Theoty-1	Chemical Dynamics & Coordination Chemistry	Chemistry in 12 th Physics in 12 th	Yes Zoo/Bot./Physics/Math/Comp Sci.	60	4
Techniques		Pracical-2	Physical Analysis	Opted Sem-III, Theory Ppaer-1	Yes Zoo/Bot./Physics/Math/Comp Sci.	60	2
		Theoty-1	Quantum Mechanics and Analytical Techniques	Chemistry in 12 th	Yes Zoo/Bot./Physics/Math/Comp Sci.	60	4
	IV	Practical- 2	Instrumental Analysis	Chemistry in 12 th	Yes Zoo/Bot./Physics/Math/Comp Sci.	60	2
Degree in		Theory-1	Organic Synthesis-A	Passed Sem-I, Theory paper-	Yes Zoo/Bot./Physics/Math/Comp Sci.	60	4
Bachelor of Science	v	Theory-1	Rearrangements and Chemistry of Group Elements	Passed Sem-I, Theory paper-	Yes Zoo/Bot./Physics/Math/Comp Sci.	60	4
Science		Practical- 3	Qualitative analysis	Opted Sem-V Theory Ppaer-1 &2	Yes Zoo/Bot./Physics/Math.	60	2

	Research Project				45	3
	Theory-1	Organic Synthesis-B	Passed Sem-V Theory paper-1	Yes Zoo/Bot./Physics/Math	60	4
VI	Theory-1	Chemical Energetics and Radiochemistry	Chemistry in 12 th Physics in 12 th	Yes Zoo/Bot./Physics/Math/Comp Sci.	60	4
V I	Practical- 3	Analytical Methods	Chemistry in 12 th	Yes Zoo/Bot./Physics/Math/Comp Sci.	60	2
	Research Project				45	3

Year	Sem.	Course Code	Paper Title	Theory/Practical	Credits
Certificate in Bioorganic and Medicinal Chemistry				nistry	
1	I	B020101T	020101T Fundamentals of Chemistry Theo		4
		B020102P	Quantitative Analysis	Practical	2
1	11	B020201T	Bioorganic and Medicinal Chemistry	Theory	4
		B020202P	Biochemical Analysis	Practical	2

Semester-1, Paper-1 (Theory) Course Title: Fundamentals of Chemistry

Programme/Class: Certificate in Bioorganic and Medicinal Chemistry	Year: First	Semester: First			
Paper-1 Theory		Subject: Chemistry			
Course Code:B020101T	Course T	itle: Fundamentals of Chemistry			
Course outcomes : There is nothing more fundamental to chemistry than the chemical bond. Chemical bonding is the language of logic fo					

There is nothing more fundamental to chemistry than the chemical bond. Chemical bonding is the language of logic for chemists. Chemical bonding enables scientists to take the 100-plus elements of the periodic table and combine them in myriad ways to form chemical compounds and materials. Periodic trends, arising from the arrangement of the periodic table, provide chemists with an invaluable tool to quickly predict an element's properties. These trends exist because of the similar atomic structure of the elements within their respective group families or periods, and because of the periodic nature of the elements. Reaction mechanism gives the fundamental knowledge of carrying out an organic reaction in a step-by-step manner. This course will provide a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving with a molecular perspective. Students will gain an understanding of

- Molecular geometries , physical and chemical properties of the molecules.
- Current bonding models for simple inorganic and organic molecules in order to predict structures and important bonding parameters.
- The chapter Recapitulation of basics of organic chemistry gives the most primary and utmost important knowledge and concepts of organic Chemistry.
- This course gives a broader theoretical picture in multiple stages in an overall chemical reaction. It describes reactive intermediates, transition states and states of all the bonds broken and formed. It enables to understand the reactants, catalyst, steriochemistry and major and minor products of any organic reaction.
- It describes the types of reactions and the Kinetic and thermodynamic aspects one should know for carrying out any reaction and the ways how the reaction mechanism can be determined.
- The chapters Steriochemistry gives the clear picture of two-dimensional and three-dimensional structure of the molecules, and their role in reaction mechanism.

	Credits: 4	Compulsory	
	Max. Marks: 25+75	Min. Passing Marks:	
Total No. of Lectures $= 60$			
Unit	Topics		No. of Lectures
I	Introduction to Indian ancient Chemistry and contribution of Indian Chemists, in context to the holistic development of modern science and technology, should be included under Continues Evaluation (CIE)		10

	Molecular polarity and Weak Chemical Forces : Resonance and resonance energy, formal charge, Van der Waals forces, ion-dipole forces, dipole-	
	dipole interactions, induced dipole interaction, dipole moment and molecular Structure (Diatomic	
	and polyatomic molecules), Percentage ionic character from dipole moment, polarizing power and	
	polarizability. Fajan's rules and consequences of polarization. Hydrogen bonding, van der Waals	
	forces, ion-dipole forces, dipole-dipole interactions, induced dipole interaction.	
	Simple Bonding theories of Molecules	
	Atomic orbitals, Aufbau principle, multiple bonding (σ and π bond approach) and bond lengths, the	
	valence bond theory (VBT), Concept of hybridization, hybrid orbitals and molecular geometry,	
	Bent's rule, Valence shell electron pair repulsion theory (VSEPR), shapes of the following simple	
Π	molecules and ions containing lone pairs and bond pairs of electrons: H ₂ O, NH ₃ , PCl ₅ , SF ₆ , SF ₄ ,	10
	ClF ₃ , I ₃ ⁻ , and H ₃ O ⁺ . Molecular orbital theory (MOT). Molecular orbital diagrams bond orders of	
	homonuclear and heteronuclear diatomic molecules and ions (N ₂ , O ₂ , C ₂ , B ₂ , F ₂ , CO, NO, and their	
	ions)	
	Periodic properties of Atoms (with reference to s & p-block):	
	Brief discussion, factors affecting and variation trends of following properties in groups and periods.	
III	Effective nuclear charge, shielding or screening effect, Slater rules, Atomic and ionic radii,	05
	Electronegativity, Pauling's/ Allred Rochow's scales, Ionization enthalpy, Electron gain enthalpy.	03
	Recapitulation of basics of Organic Chemistry: Hybridization, bond lengths and bond angles,	
	bond energy, localized and delocalized chemical bonding, Van der Waals interactions, inclusion	
IV	compounds, Clatherates, Charge transfer complexes, hyperconjugation, Dipole moment; Electronic	05
	Displacements: Inductive, electromeric, resonance mesomeric effects and their applications	
	Mechanism of Organic Reactions: Curved arrow notation, drawing electron movements with	
	allows, half-headed and double-headed arrows, homolytic and heterolytic bond fission, Types of	
V	reagents – electrophiles and nucleophiles, Types of organic reactions, Energy considerations.	10
	Reactive intermediates – Carbocations, carbanions, free radicals, carbenes, arynes and nitrenes (with	
	examples).	
	Steriochemistry-Concept of isomerism, Types of isomerism; Optical isomerism - elements of	
	symmetry, molecular chirality, enantiomers, stereogenic center, optical activity, properties of	
	enantiomers, chiral and achiral molecules with two stereogenic centers, disasteromers, threo and	
	erythro diastereomers, meso compounds, resolution of enantionmer, inversion, retention and	
VI	recemization. Relative and absolute configuration, sequence rules, D & L and R & S systems of	10
	nomenclature. Geometric isomerism – determination of configuration of geometric isomers, E & Z	
	system of nomenclature, geometric isomerism in oximes and alicyclic compounds. Conformational	
	system of nonnenciature, geometric isomerism in oximes and ancyclic compounds. Comornational	I
	isomerism – conformational analysis of ethane and n-butane; conformations of cyclohexane, axial	

	and equatorial bonds, conformation of mono substituted cyclohexane derivatives, Newman				
	projection and Sawhorse formulae, Fischer and flying wedge formulae, Difference between				
	configuration and conformation.				
	Basic Computer system (in brief)-Hardware and Software; Input devices, Storage devices, Output				
	devices, Central Processing Unit (Control Unit and Arithmetic Logic Unit); Number system (Binary,				
	Octal and Hexadecimal Operating System); Computer Codes (BCD and ASCII); Numeric/String				
VII	constants and variables. Operating Systems (DOS, WINDOWS, and Linux); Introduction of	05			
	Software languages: Low level and High Level languages (Machine language, Assembly language;	00			
	QBASIC, FORTRAN) Software Products (Office, chemsketch, scilab, matlab, hyperchem, etc.),				
	internet application.				
	Mathematical Concepts for Chemistry				
	Logarithmic relations, curve sketching, linear graphs and calculation of slopes, differentiation of functions like Kx, e^x , X^n , sin x, log x; maxima and minima, partial differentiation and reciprocity				
VIII					
	relations, Integration of some useful/relevant functions; permutations and combinations, Factorials,	05			
	Probability				
 Huh Read Dou Shri Day Sing Sing Sing Mor Care Loud Clay Clay Clay Syke Fran Note: For 	J.D. Concise Inorganic Chemistry, Pearson Education 2010 eey, J.E., Keiter, E.A., Keiter, R. L., Medhi, O.K. Inorganic Chemistry, Principles of Structure and ctivity, Pearson Education 2006. glas, B.E. and Mc Daniel, D.H., Concepts & Models of Inorganic Chemistry, Oxford, 1970 ver, D.D. & P. Atkins, <i>Inorganic Chemistry 2nd Ed.</i> , Oxford University Press, 1994. , M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications 1962. th J., Yadav L.D.S., Advanced Organic Chemistry, Pragati Edition rison, R. N. & Boyd, R. N. <i>Organic Chemistry</i> , Dorling Kindersley (India) Pvt. Ltd. (Pearson Educa ey, F. A., Guiliano, R. M. <i>Organic Chemistry</i> , Eighth edition, McGraw Hill Education, 2012. don, G. M. <i>Organic Chemistry</i> , Fourth edition, Oxford University Press, 2008. vden, J., Greeves, N. &Warren, S. <i>Organic Chemistry</i> , John Wiley & Sons, Inc. es, P. <i>A guidebook to Mechanism in Organic Chemistry</i> , 1984 or the promotion of Hindi language, course books published in Hindi may be prescribed by the Univ				
	nline links: ntent.upsdc.gov.in/Home.aspx				
nttps://npte	l.ac.in/courses/104/106/104106096/				
-	ntent.upsdc.gov.in/Home.aspx				
	l.ac.in/courses/104/106/104106096/ v2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm				
	l.ac.in/courses/104/103/104103071/#				
This cours	e is compulsory for the students of following subjects: Chemistry in 12 th Class				

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others . Or

Assessment and presentation of Assignment	(10 marks)
04 tests (Objective): Max marks of each test = 10	(10 marks)
(average of all 04 tests)	
Overall performance throughout the semester, Discipline,	(05 marks)
participation in different activities)	
participation in different activities)	
· · · · · · · · · · · · · · · · · · ·	emistry in class 12 th
· · · · · · · · · · · · · · · · · · ·	emistry in class 12 th
Course prerequisites: To study this course, a student must have had the ch	nemistry in class 12 th
participation in different activities) Course prerequisites: To study this course, a student must have had the ch Suggested equivalent online courses:	emistry in class 12 th
Course prerequisites: To study this course, a student must have had the ch	nemistry in class 12 th

Semester-I, Paper-2 (Practical) Course Title: Quantitative Analysis

0	Programme: Certificate in Bioorganic and Medicinal Chemistry		Semester: I		
Practical paper-2				Subject: Ch	emistry
Course Code: B020102P			e: Quantit	ative Analysis	
Course	outcomes:				
-	-		-	ge and skills to: understand the la s and alkali contents in commen	-
	Potability tests of water s			s and arkan contents in comme	ierar products.
	Estimation of metal ions	-			
	Estimation of alkali and a	-	les		
•	Estimation of inorganic s	-		s	
	Credits: 2			Elective	
	Max. Marks: 25+7	5 - 100		Min. Passing Marks:	
		5 – 100		-	
	Practical			60 h	No of
Unit		Το	pics		Lectures
	Water Quality analysis 1. Estimation of hards	ness of water by EDT	ΓA		
Ι		hemical oxygen dema		16	
		Biological oxygen der			
	Estimation of Metals ions				
II	1. Estimation of ferrous	s and ferric by dichro	mate method	l.	14
	2. Estimation of copper	0			
	Estimation of acids and all 1. Determination of a	Ikali contents cetic acid in commer	cial vinegar ı	ising NaOH	
II			-	-	14
 Determination of alkali content – antacid tablet using HCl. Estimation of oxalic acid by titrating it with KMnO₄. 					
Estimation of inorganic salts and hydrated water					
	1. Estimation of sodiu mixture.	im carbonate and sod	ium hydroge	n carbonate present in a	
IV	2. Estimation of calci		alk as calcium oxalate by permanganometry. n in Mohr's salt by titrating with KMnO4.		16
11				• • • •	10

Suggested Readings:

- 1. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- 2. Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- 3. Harris, D.C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- 4. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- 5. Skoog, D.A. Holler F.J. and Nieman, T.A. *Principles of Instrumental Analysis*, Cengage Learning India Edition

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University

Suggestive digital platforms web links

- 6. https://www.labster.com/chemistry-virtual-labs/
- 7. https://www.vlab.co.in/broad-area-chemical-sciences
- 8. <u>http://chemcollective.org/vlabs</u>

This course can be opted as an elective by the students of following subjects: Chemistry in 12 th Class					
Suggested Continuous Evaluation Method	ds:				
Viva voce	(10 marks)				
Mock test	(10 marks)				
Overall performance	(05marks)				
Course prerequisites: To study this cou	urse, a student must have had the chemistry in 12 th Class				
Suggested equivalent online courses:					
~~ .					
Further Suggestions:					

Programme: Certificate in Bioorganic and Medicinal Chemistry		Year: 1		Semester: II			
Paper-1		Elective Subject:		Subject: Che	emistry		
Course Code: B020201T Course Title			Bioorgani	c and Medicinal Chemistry			
Course outcomes: Biomolecules are important for the functioning of living organisms. These molecules					es perform		
or trigger important biochemical reactions in living organisms. When studying biomolecules, one can understand							
the physiolo	ogical function that re	egulates the proper g	rowth and c	levelopment of a human body. This c	ourse aims		
to introduce	the students with basi	c experimental unders	standing of c	arbohydrates, amino acids, proteins, nu	cleic acids		
and medicin	al chemistry. Upon co	ompletion of this cour	rse students	may get job opportunities in food, be	verage and		
pharmaceut	ical industries.						
	Credits: 4			Elective			
	Max. Marks: 2:	5+75		Min. Passing Marks:			
		Total No.	of Lectures	s = 60			
Unit		T	opics		No. of Lectures		
	Chemistry of Carbo	ohydrates : Classifica	ation of carb	ohydrates, reducing and non-reducing	Lectures		
	sugars, General Properties of Glucose and Fructose, their open chain structure. Epimers,						
	mutarotation and anomers. Mechanism of mutarotation Determination of configuration of						
	Glucose (Fischer's proof). Cyclic structure of glucose. Haworth projections. Cyclic structure						
I	of fructose. Inter con	versions of sugars (as	cending and	descending of sugar series, conversion	10		
	of aldoses to ketoses). Lobry de Bruyn-van Ekenstein rearrangement; stepping-up (Kiliani-						
	Fischer method) and stepping-down (Ruff's &Wohl's methods) of aldoses; end-group-						
	interchange of aldoses Linkage between monosachharides, structure of disacharrides (sucrose,						
	maltose, lactose.)						
	Chemistry of Prote	ins: Classification of	amino acid	s, zwitter ion structure and Isoelectric			
	point. Overview of	primary, secondary	, tertiary a	nd quaternary structure of proteins.			
	Determination of print	mary structure of pep	tides, detern	nination of N-terminal amino acid (by			
п	DNFB and Edman method) and C-terminal amino acid (by thiohydantoin and with						
II	carboxypeptidase enz	zyme). Synthesis of si	mple peptide	es (upto dipeptides) by N-protection &	10		
	C-activating groups a	and Merrifield solid pl	hase synthes	is. Protein denaturation/ renaturation	on		
	Mechanism of enzym	ne action, factors affect	cting enzyme	e action, Coenzymes and cofactors and			
	their role in biological reactions).						
ш				acids: Adenine, guanine, thymine and	~ -		
	Cytosine (Structure o	only), Nucleosides and	l nucleotides	(nomenclature), Synthesis of nucleic	05		

Semester-II Paper-1 Course Title: Bioorganic and Materials Chemistry

	acids, Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation	
	Introductory Medicinal Chemistry : Drug discovery, design and development; Basic	
IV	Retrosynthetic approach. Drug action-receptor theory. Structure – activity relationships of drug	
	molecules, binding role of –OH group,-NH ₂ group, double bond and aromatic ring. Mechanism of action of the representative drugs of the following classes: analgesics agents,	
		10
	antipyretic agents, anti-inflammatory agents (Aspirin, paracetamol); antibiotics	
	(Chloramphenicol); antibacterial and antifungal agents (Sulphonamides; Sulphanethoxazol,	
	Sulphacetamide); antiviral agents (Acyclovir), Central Nervous System agents (Phenobarbital,	
	Diazepam),Cardiovascular (Glyceryl trinitrate), HIV-AIDS related drugs (AZT- Zidovudine	
	Solid State	
	Definition of space lattice, unit cell. Laws of crystallography – (i) Law of constancy of	
V	interfacial angles, (ii) Law of rationality of indices and iii) Symmetry elements in crystals and	05
	law of symmetry .X-ray diffraction by crystals. Derivation of Bragg equation. Determination	
	of crystal structure of NaCl, KCl and CsCl (powder method).	
	Introduction to Polymer	
	Monomers, Oligomers, Polymers and their characteristics, Classification of polymers :	
	Natural synthetic, linear, cross linked and network; plastics, elastomers, fibres,	
	Homopolymers and Co-polymers, Bonding in polymers : Primary and secondary bond forces	
VI	in polymers ; cohesive energy, and decomposition of polymers. Determination of Molecular	10
V I	mass of polymers: Number Average molecular mass (Mn) and Weight average molecular mass	10
	(Mw) of polymers and determination by (i) Viscosity (ii) Light scattering method (iii) Gel	
	permeation chromatography (iv) Osmometry and Ultracentrifuging.	
	Silicones and Phosphazenes –Silicones and phosphazenes as examples of inorganic	
	polymers, nature of bonding in triphosphazenes.	
	Kinetics and Mechanism of Polymerization	
	Polymerization techniques, Mechanism and kinetics of copolymerization, Addition or chain-	
VII	growth polymerization, Free radical vinyl polymerization, ionic vinyl polymerization, Ziegler-	05
V 11	Natta polymerization and vinyl polymers, Condensation or step growth-polymerization,	03
	Polyesters, polyamides, phenol formaldehyde resins, urea formaldehyde resins, epoxy resins	
	and polyurethanes.	
	Synthetic Dyes: Colour and constitution (electronic Concept), Classification of dyes,	
	Symmetre Dyest Colour and Constitution (Creationne Concept), Chassinearion of ayes,	
VIII	Chemistry and synthesis of Methyl orange, Congo red, Malachite green, crystal violet,	05

Suggested Readings:

- 1. Davis, B. G., Fairbanks, A. J., *Carbohydrate Chemistry*, Oxford Chemistry Primer, Oxford University Press.
- 2. Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 3. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed., W. H. Freeman.
- 4. Berg, J. M., Tymoczko, J. L. & Stryer, L. *Biochemistry 7th Ed.*, W. H. Freeman.
- 5. Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 6. Patrick, G. L. Introduction to Medicinal Chemistry, Oxford University Press, UK, 2013.
- 7. Singh, H. & Kapoor, V.K. Medicinal and Pharmaceutical Chemistry, Vallabh Prakashan, Pitampura, New Delhi, 2012.
- 8. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 13 (2006).
- 9. Ball, D. W. Physical Chemistry Thomson Press, India (2007).
- 10. Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004).
- R.B. Seymour & C.E. Carraher: *Polymer Chemistry: An Introduction*, Marcel Dekker, Inc. New York, 1981.
- 12. G. Odian: Principles of Polymerization, 4thEd. Wiley, 2004.
- **13.** F.W. Billmeyer: *Textbook of Polymer Science*, 2nd Ed. Wiley Interscience, 1971.
- 14. P. Ghosh: Polymer Science & Technology, Tata McGraw-Hill Education, 1991

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University **Suggested online links**:

http://heecontent.upsdc.gov.in/Home.aspx

https://nptel.ac.in/courses/104/105/104105124/ https://nptel.ac.in/courses/103/106/105106204/ https://nptel.ac.in/courses/104/103/104103121/ https://nptel.ac.in/courses/104/103/104103121/ https://nptel.ac.in/courses/104/102/104102016/ https://nptel.ac.in/courses/104/106/104106106/

https://nptel.ac.in/courses/104/105/104105120/

This course can be opted as an elective by the students of following subjects: Chemistry in 12th Class

Suggested Continuous Evaluation Methods:

(10 marks)					
(10 marks)					
(05 marks)					
t have Passed Sem-I, Theory paper-1					
Suggested equivalent online courses:					
Further Suggestions:					
Tutulet Suggestions.					

Semester-II, Paper-2 (Practical) Course Title: Biochemical Analysis

•	amme: Certificate in ganic and Medicinal Chemistry	Year: 1		Semester: II
		Subje	et: Chemistry	
Cour	rse Code: B020202P	Course Title:	Biochemical Analysis	
This cour carbohydr	ates, proteins, amino a	cids, nucleic acids d		dge of biomolecules such a sful completion of this courses.
	Credits: 2		Ele	ective
	Max. Marks: 25+7	5 = 100	Min. Pas	sing Marks:
	Practical			60-h
Unit			opics	No of Lectures
I	 Qualitative and quantitative analysis of Carbohydrates: . 1. Separation of a mixture of two sugars by ascending paper chromatography 2. Differentiate between a reducing/ nonreducing sugar 3. Synthesis of Osazones. 		romatography 15	
II	 Isolation of p Determination TLC separation Paper chromation Action of salid To determine To determine 	rotein. n of protein by the E on of a mixture cont tographic separation vary amylase on sta	aining 2/3 amino acids of a mixture containing 2/3 rch glycine solution by formyl alue of an oil/fat.	3 amino acids 20
III	Determination and 1. Determination 2. Extraction of			12
IV		pirin by acetylation of a spirin tablet by TLC ituric acid	f salicylic acid and compare.	e it with the 13

Suggested Readings:

- 1. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *Practical Organic Chemistry, 5th Ed.*, Pearson (2012).
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education.
- 3. Vogel's Qualitative Inorganic Analysis, Revised by G. Svehla.
- 4. Vogel, A.I. A Textbook of Quantitative Analysis, ELBS. 1986
- 5. Furniss, B.S.; Hannaford, A.J.; Rogers, V.; Smith, P.W.G.; Tatchell, A.R. *Vogel's Textbook of Practical Organic Chemistry*, ELBS.
- 6. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry, Universities Pres
- 7. Cooper, T.G. Tool of Biochemistry. Wiley-Blackwell (1977).
- 8. Wilson, K. & Walker, J. Practical Biochemistry. Cambridge University Press (2009).
- 9. Varley, H., Gowenlock, A.H & Bell, M.: Practical Clinical Biochemistry, Heinemann,

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University **Suggestive digital platforms web links**

- 1. https://www.labster.com/chemistry-virtual-labs/
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>http://chemcollective.org/vlabs</u>

This course can be opted as an elective by the students of following subjects: Chemistry in 12th Class

Suggested Continuous Evaluation Methods:

Viva voce	(10 marks)
Mock test	(10 marks)
Overall performance	(05marks)
<u>^</u>	

Course prerequisites: To study this course, a student must have Opted Sem-II, Theory Ppaer-1.

Suggested equivalent online courses:

.....

······

Further Suggestions:

Year	Sem.	Course Code	Paper Title	Theory/Practical	Credits
		Diploma i	n Chemical Dynamics and Analyti	cal Techniques	
2	111	B020301T	Chemical Dynamics & Coordination Chemistry	Theory	4
		B020302P	Physical Analysis	Practical	2
	IV	B020401T	Quantum Mechanics and Analytical Techniques	Theory	4
		B020402P	Instrumental Analysis	Practical	2

Semester III, Paper-1 (Theory) Course Title: Chemical Dynamics & Coordination Chemistry

Programme: Diploma in Chemical Dynamics and Analytical TechniquesYear: TwoSemester: IIIPaper-1TheorySubject: CCourse Code:B020301TCourse Title: Chemical Dynamics & CoordinationCourse outcomes:Upon successful completion of this course students should be able to describe the the three states of matter and describe the different physical properties of each state of matter. kinetic theory of crystallography , liquid state and liquid crystals, conductometric, potentiometric, optical methods, spectrophotometer technique to study Chemical kinetics and chemical equilibrium. After the completion	n Chemistry
Course Code:B020301T Course Title: Chemical Dynamics & Coordination Course outcomes: Upon successful completion of this course students should be able to describe the three states of matter and describe the different physical properties of each state of matter. kinetic theo of crystallography , liquid state and liquid crystals, conductometric, potentiometric, optical methods,	n Chemistry
Course outcomes : Upon successful completion of this course students should be able to describe the three states of matter and describe the different physical properties of each state of matter. kinetic theo of crystallography, liquid state and liquid crystals, conductometric, potentiometric, optical methods,	·
the three states of matter and describe the different physical properties of each state of matter. kinetic theo of crystallography, liquid state and liquid crystals, conductometric, potentiometric, optical methods,	characteristic of
of crystallography, liquid state and liquid crystals, conductometric, potentiometric, optical methods,	characteristic of
	ry of gases, laws
spectrophotometer technique to study Chemical kinetics and chemical equilibrium. After the completion	polarimetry and
species provident de la stady en	on of the course,
Students will be able to understand .metal- ligand bonding in transition metal complexes, thermodyn	amic and kinetic
aspects of metal complexes.	
Credits: 4 Elective	
Max. Marks: 25+75 Min. Passing Marks:	
Total No. of Lectures = 60	
Unit Topics	No. of Lectures
Chemical Kinetics: Rate of a reaction, molecularity and order of reaction, concentration dependent	
of rates, mathematical characteristic of simple chemical reactions - zero order, first order,	second
order, pseudo order, half-life and mean life. Determination of the order of reaction – diffe	rential
method, method of integration, half-life method and isolation method.	
I Theories of chemical kinetics: Effect of temperature on rate of reaction, Arrhenius equip	ation, 10
concept of activation energy. Simple collision theory based on hard sphere model, transitio	n state
theory (equilibrium hypothesis). Expression for the rate constant based on equilibrium consta	nt and
thermodynamic aspects (no derivation).	
Chemical Equilibrium : Equilibrium constant and free energy, thermodynamic derivation	of law
II of mass action. Le-Chatelier's principle. reaction isotherm and reaction isochore – Clap	eyron- 5
Clausius equation and its applications.	
Phase Equilibrium : Statement and meaning of the terms-phase, component and degree of free	edom,
derivation of Gibbs phase rule, phase equilibria of one component system – water, CO_2 and sy	
	07
III Phase equilibria of two component systems – Solid - liquid equilibria , simple eutectic – Bi-C	d, Pb- 05

	Kinetic theories of gases	
	Gaseous State: Postulates of kinetic theory of gases, deviation from ideal behavior, van der Waals	
	equation of state.	
IV	Critical phenomena: PV isotherms of real gases, continuity of states, the isotherms of Van der	
	Waals equation, relationship between critical constants and Van der Waals constants, the law of corresponding states, reduced equation of state.	
1.		
	Molecular Velocities: Qualitative discussion of the Maxwell's distribution of molecular velocities,	
	collision number, mean free path and collision diameter.	
	Liquid State	
	Liquid State: Intermolecular forces, structure of liquids (a qualitative description). Structural	
\mathbf{V}	differences between solids, liquids and gases. Liquid crystals: Difference between liquid crystal,	
	solid and liquid. Classification, structure of nematic and cholesterol phases.	
	Liquids in solids (gels): Classification, preparation and properties, inhibition, general application	
	Coordination Chemistry	
	Werner's theory of coordination complexes, classification of ligands, ambidentate ligands, chelates,	
VI	coordination numbers, IUPAC nomenclature of coordination complexes (up to two metal centers),	
	Isomerism in coordination compounds, constitutional and stereo isomerism, geometrical and optical	
	isomerism in square planar and octahedral complexes.	
	Theories of Coordination Chemistry	
	I Metal-ligand bonding in transition metal complexes, limitations of valance bond theory, an	
	elementary idea of crystal field theory, crystal field splitting in octahedral, tetrahedral and square	
VII	planner complexes, John teller effect, factors affecting the crystal-field parameters.	
	II. Thermodynamic and kinetic aspects of metal complexes: A brief outline of thermodynamic	
	stability of metal complexes and factors affecting the stability, stability constants of complexes and	
	their determination, substitution reactions of square planar complexes	
	Inorganic Spectroscopy and Magnetism I)Electronic spectra of Transition Metal Complexes	
	Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states,	
VIII	spectrochemical series, Orgel-energy level diagram for d1 and d9 states, discussion of the electronic	
	spectrum of $[Ti(H_2O)_6]^{3+}$ complex ion.	
	II)Magnetic properties of transition metal complexes, types of magnetic behaviour, methods of	
	determining magnetic susceptibility, spin-only formula, L-S coupling, correlation of μ s and μ eff	

values, orbital contribution to magnetic moments, application of magnetic moment data for 3d-metal complexes.

Suggested Readings:

- 1. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 13 (2006).
- 2. Ball, D. W. Physical Chemistry Thomson Press, India (2007).
- 3. Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004).
- 4. Cotton, F.A, Wilkinson, G and Gaus, P. L , Basic Inorganic Chemistry, 3rd Edition , Wiley 1995
- 5. Lee, J.D, Concise Inorganic Chemistry 4th Edition ELBS, 1977
- 6. Douglas, B, McDaniel , D and Alexander, J , Concepts of Models of Inorganic Chemistry, John Wiley & Sons; 3rd edition , 1994
- 7. Shriver, D.E Atkins, P.W and Langford, C.H., Inorganic Chemistry, Oxford University Press, 1994.
- 8. Porterfield ,W.W, Inorganic Chemistry ,Addison Wesley 1984.
- 9. Sharpe, A.G, Inorganic Chemistry, ELBS, 3RD edition, 1993
- **10.** Miessler, G.L, Tarr, D.A, Inorganic Chemistry, 2nd edition, Prentice Hall, 2001

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University Suggestive digital platforms web links-

Suggestive digital platforms web links:

- 11. <u>https://swayam.gov.in/</u>
- 12. https://www.coursera.org/learn/physical-chemistry
- 13. https://www.mooc-list.com/tags/physical-chemistry
- 14. https://www.openlearning.com/courses/introduction-to-physical-chemistry/
- 15. <u>https://www.my-mooc.com/en/categorie/chemistry</u>
- 16. <u>https://onlinecourses.swayam2.ac.in/nce19_sc15/preview</u>
- 17. https://swayam.gov.in/

18. https://www.coursera.org/browse/physical-science-and-engineering/chemistry

This course can be opted as an elective by the students of following subjects: Chemistry in 12th Class

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others .

Or

Assessment and presentation of Assignment	(10 marks)
04 Unit tests (Objective): Max marks of each unit test = 10 (average of all 04 unit tests)	(10 marks)
Overall performance throughout the semester (Discipline, participation in different activities)	(05 marks)

Course prerequisites: To study this course, a student must have had the chemistry in class 12th , Physics in Class 12th

Suggested equivalent online courses:

.....

Further Suggestions:

.....

Semester III, Paper-2 (Practical): Course Title: Physical Analysis

Che	Programme: Diploma in Chemical Dynamics and Analytical Techniques		70	Semester: III	
	Practical paper-2			Subject: Chemistry	
Cou	urse Code: B020302P	Course Title:	Physical A	nalysis	
Course O	utcomes: Upon successfu	al completion of this c	ourse studen	ts should be able to calibrate apparatus a	nd prepare
solutions	of various concentration	s, estimation of com	ponents thro	ugh volumetric analysis; to perform di	latometric
experimen	ts: one and two compone	nt phase equilibrium e	xperiments.		
	Credits: 4			Elective	
	Max. Marks: 25	+75		Min. Passing Marks:	
	Practical			60 h	
Unit			Topics		No of Lectures
I	 Strengths of Solution Calibration of fractional weights, pipettes and burettes. Preparation of standards solutions. Dilution – 0.1 M to 0.001 M solutions. Mole Concept and Concentration Units :Mole Concept, molecular weight, formula weight, and equivalent weight. Concentration units: Molarity, Formality, Normality, Molality, Mole fraction, Percent by weight, Percent by volume, Parts per thousand, Parts per million, Parts per billion, pH, pOH, milli equivalents, Milli moles 			20	
п	Surface Tension and V 1. Determination of 2. Determination of	surface tension of pu			06
III	Boiling point and Transition Temperature 1. Boiling point of common organic liquid compounds ANY FIVE]nbutylalcohol, cyclohexanol, ethyl methyl ketone, cyclohexanone, acetylacetone, isobutyl methyl ketone, isobutyl alcohol, acetonitrile, benzaldebyde and acetophenone. [Boiling points of the chosen organic compounds]			14	
IV	Phase Equilibrium				20

1. To study the effect of a solute (e.g. NaCl, st	uccinic acid) on the critical solution temperature of			
two partially miscible liquids (e.g. phenolw	vater system) and to determine the concentration of			
	hat solute in the given phenol-water system			
2. To construct the phase diagram of two com	ponent (e.g. diphenylamine – benzophenone) system			
by cooling curve method.				
Suggested Readings:	·			
1. Skoog .D.A., West.D.M and Holler .F.J., "Analytic publishing, Philadelphia,(2010).	cal Chemistry: An Introduction", 7th edition, Saunders college			
2. Larry Hargis.G" Analytical Chemistry: Principles	and Techniques" Pearson©(1988)			
Note: For the promotion of Hindi language, course books				
Suggestive digital platforms web links				
1. <u>https://www.labster.com/chemistry-virtual-labs/</u>				
2. <u>https://www.vlab.co.in/broad-area-chemical-scienc</u>	es			
3. <u>http://chemcollective.org/vlabs</u>				
This course can be opted as an elective by the studen	its of following subjects: Chemistry in 12 th Class			
Constant of Constinuous Freeloction Matheday				
Suggested Continuous Evaluation Methods:	$(10 \operatorname{morb})$			
Viva voce	(10 marks)			
Mock test	(10 marks)			
Overall performance	(05marks)			
Course prerequisites: To study this course, a student	t must have Opted Sem-III, Theory Ppaer-1			
Suggested equivalent online courses:				
<u></u>				
Further Suggestions:				

Semester IV Paper-1 (Theory) Course Title: Quantum Mechanics and Analytical Techniques

Droo			s and Analytical Techniques	
Che	gramme: Diploma in mical Dynamics and alytical Techniques	Year: Two	Semester: IV	
	Paper-1	Elective	Subject: Chemis	stry
Cou	rse Code: BO20401T	Course Title: Quantum M	lechanics and Analytical Techniques	
Molec Spectr reaction Analy environ different chemini- S S S S	ular orbital theory, bas oscopy, Rotational Spec on tical chemistry plays an e nmental monitoring, med ent research areas. Analy cal analysis can be impro- tudents will be able to ex- tudents will be able to fu	ic ideas – Criteria for formin trum, vibrational Electronic S enormous role in our society, su dical diagnostics, food product ytical chemistry is a science t oved to respond to increasing o plore new areas of research in ter nction as a member of an inter	Ficance ;Schrodinger wave equation and its ng molecular orbital from atomic orbitals pectrum: photo chemistry and kinetics of ph uch as in drug manufacturing, process contro- tion, and forensic surveys. It is also of great i hat is directed towards creating new know r new demands. both chemistry and allied fields of science and disciplinary problem solving team. ting and analytical reasoning as applied to sc	, Molecul noto chemic ol in industr mportance ledge so th d technolog
sj	pectroscopic techniques	-	the structure of organic molecules using IR extraction, TLC and column chromatograp	
sj	pectroscopic techniques	-		
sj	pectroscopic techniques o develop basic skills rec	quired for purification, solven	extraction, TLC and column chromatograph	
sj	pectroscopic techniques o develop basic skills red Credits: 4	quired for purification, solven	extraction, TLC and column chromatograph Elective Min. Passing Marks:	
sj	pectroscopic techniques o develop basic skills red Credits: 4	quired for purification, solvent	extraction, TLC and column chromatograph Elective Min. Passing Marks:	
sj • T	Credits: 4 Max. Marks: 25 Atomic Structure: Id orbitals, Schrödinger v angular wave function	quired for purification, solvent 5+75 Total No. of Lec Topics ea of de-Broglie matter waves, wave equation, significance of	Exertaction, TLC and column chromatograph Elective Min. Passing Marks: tures- = 60 Heisenberg uncertainty principle, atomic Ψ and Ψ ² , quantum numbers, radial and surves, shapes of s, p, d, orbitals. Aufbau	hy No. of

	Schrödinger wave equation (time dependent and time independent) and its importance, physical	
	interpretation of the wave function, postulates of quantum mechanics, particle in a one	
	dimensional box. Schrödinger wave equation for H-atom, separation into three equations (without	
	derivation), quantum numbers and their importance, hydrogen like wave functions, radial wave	
	functions, angular wave functions. Molecular orbital theory, basic ideas - Criteria for forming	
	MO from AO, construction of MO by $LCAO - H_2 + ion$, calculation of energy levels from wave	
	functions, physical picture of bonding and anti-bonding wave functions, concept of σ , σ^* , π , π^*	
	orbitals and their characteristics.	
	Molecular Spectroscopy: Introduction: Electromagnetic radiation, regions of the spectrum, basic	
	features of different spectrometers, statement of the Born-Oppenheimer approximation, degrees	
	of freedom	
	Rotational Spectrum: Diatomic molecules . Energy levels of a rigid rotor (semi-classical	
	principles), selection rules, spectral intensity, distribution using population distribution (Maxwell-	
	Boltzmann distribution) determination of bond length, qualitative description of non-rigid rotor,	
	isotope effect .	
III	Vibrational Spectrum: Infrared spectrum : Energy levels of simple harmonic oscillator,	10
	selection rules, pure vibrational spectrum, intensity, determination of force constant and	
	qualitative relation of force constant and bond energies, effect of anharmonic motion and isotope	
	on the spectrum, idea of vibrational frequencies of different functional groups.	
	Raman spectrum: Concept of polarizability, pure rotational and pure vibrational, Raman	
	spectra of diatomic molecules, selection rules. Electronic Spectrum: Concept of potential energy	
	curves for bonding and antibonding molecular orbitals, qualitative description of selection rules.	
	UV-Visible Spectroscopy :	
	Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and	
	selection rules. Types of electronic transitions, \u03c0max, chromophores and auxochromes,	
IV	Bathochromic and Hypsochromic shifts, Intensity of absorption; application of Woodward Rules	5
	for calculation of λ max for the conjugated dienes: alicyclic, homoannular and heteroannular;	
	extended conjugated systems distinction between cis and trans isomers (Cis and trans stilbene).	
	Infrared Spectroscopy:	
	IR Spectroscopy : Fundamental and non-fundamental molecular vibrations; Hooke's law	
	selection rule, IR absorption positions of various functional groups (C=O, OH, NH, COOH and	
V	nitile), Effect of H-bonding, conjugation, resonance and ring size of cyclic ketones and lactones	5
	on IR absorptions; Fingerprint region and its significance; application in functional group analysis	
	and and interpretation of I.R. spectra of simple organic compounds.	
	and and interpretation of i.i.e. spectra of simple organic compounds.	

	¹ H-NMR Spectroscopy (PMR)			
	NMR Spectroscopy: introduction; nuclear spin; NMR active molecules; basic principles of Proton			
	Magnetic Resonance; choice of solvent and internal standard; equivalent and non-equivalent			
	protons; chemical shift and factors influencing it; ring current effect; significance of the terms:			
	up-/downfield, shielded and deshielded protons; spin coupling and coupling constant (1st order			
	spectra); relative intensities of first-order multiplets: Pascal's triangle; chemical and magnetic			
	equivalence in NMR; anisotropic effects in alkene, alkyne, aldehydes and aromatics; NMR peak			
VI		10		
	area, integration; relative peak positions with coupling patterns of common organic compounds;			
	interpretation of NMR spectra of simple compounds. Applications of IR, UV and NMR			
	spectroscopy for identification of simple organic molecules such as Ethanol, Ethyl acetate,			
	acetone, acetaldehyde, dimethylformamide, Cis and trans 1,2-dimethyl cycloprpanone, propene			
	, vinyl chloride, acetophenone, benzaldehyde, phenol, Toluene and ethyl benzene.			
	Introduction to Mass Spectrometry: Principle of mass spectrometry, the mass spectrum, mass			
VII	spectrometry diagram, molecular ion, metastable ion, fragmentation process, McLafferty	3		
	rearrangement.			
	Separation Techniques: Solvent extraction: Classification, principle and efficiency of the			
	technique. Mechanism of extraction: extraction by solvation and chelation. Technique of			
	extraction: batch, continuous and counter current extractions. Qualitative and quantitative aspects			
	of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species			
VIII	from the aqueous and non-aqueous media.	07		
	Chromatography: Classification, principle and efficiency of the technique. Mechanism of			
	separation: adsorption, partition & ion exchange. Development of chromatograms: frontal, elution			
	and displacement methods.			
Suggested	Readings:			
1. 2.	Alberty, R A, Physical Chemistry, 4 th editionWiley Eastern Ltd ,2001. Atkins, P W, the elements of physical chemistry, Oxford ,1991			
3.	Barrow, G.M, International student Edition .McGraw Hill, McGraw-Hill, 1973.			
4.	Cotton,F.A, Wilkinson,G and Gaus,P. L ,Basic Inorganic Chemistry,3 rd Edition ,Wiley 1995			
5. 6.	Lee, J.D, Concise Inorganic Chemistry 4 th Edition ELBS, 1977 Clayden, J., Greeves, N., Warren, S., <i>Organic Chemistry</i> , Second edition, Oxford University Press	s 2012		
0. 7.	Silverstein, R. M., Bassler, G. C., Morrill, T. C. Spectrometric Identification of Organic Compour			
	Wiley and Sons, INC, Fifth edition.			
	Pavia, D. L. et al. Introduction to Spectroscopy, 5th Ed. Cengage Learning India Ed. Willard, H.H. et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company.	Rolmont		
9.	California, USA, 1988.	, Dennont,		
	Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.			
11.	11. Harris, D.C.: Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.			

Harris, D.C.: *Exploring Chemical Analysis*, 9th Ed. New York, W.H. Freeman, 2016.
 Khopkar, S.M. *Basic Concepts of Analytical Chemistry*. New Age International Publisher, 2009.

Suggestive digital platforms web links

- 1. <u>https://www.coursera.org/courses?query=chemistry&languages=en</u>
- 2. https://www.mooc-list.com/tags/physical-chemistry
- 3. <u>https://www.coursera.org/learn/physical-chemistry</u>
- 4. https://ocw.mit.edu/courses/chemistry/5-61-physical-chemistry-fall-2017/
- 5. http://heecontent.upsdc.gov.in/Home.aspx
- 6. <u>https://nptel.ac.in/courses/104/108/104108078/</u>
- 7. <u>https://nptel.ac.in/courses/104/108/104108124/</u>
- 8. <u>https://nptel.ac.in/courses/104/106/104106122/</u>

This course can be opted as an elective by the students of following subjects: Chemistry in 12th Class

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others . **Or**

Assessment and presentation of Assignment	(10 marks)
04 Unit tests (Objective): Max marks of each unit test $= 10$	(10 marks)
(average of all 04 unit tests)	
Overall performance throughout the semester (Discipline,	(05 marks)
participation in different activities)	
Course prerequisites: To study this course, a student must	have had the chemistry in class 12 th
Suggested equivalent online courses:	
Further Suggestions:	

Semester IV, Paper-2 (Practical) Course Title: Instrumental Analysis

Chen	camme: Diploma in nical Dynamics and lytical Techniques	Year: Tw	70	Semester: V	
	Practical paper-3			Subject: Chem	nistry
Cours	se Code: B020402P	Course Title	: Instrume	ntal Analysis	
scientific level suit • St te	inquiry in the perform able to succeed at an e udents will be able to chnology.	nance, design, interpr entry-level position ir explore new areas of	etation and chemical in research in	najors are able to employ critical documentation of laboratory expe- ndustry or a chemistry graduate p both chemistry and allied fields	eriments, at a rogram.
• St				sciplinary problem solving team. g and analytical reasoning as applie	d to scientific
N	MR spectroscopic tech	niques		e structure of organic molecules us	C
• 10	o develop basic skins it	equired for purification	ii, sorvent ez		lography
	Credits: 2			Elective	
	Max. Marks: 25	5 + 75		Min. Passing Marks:	
	Practical			60 h	
Unit		T	opics		No of Lectures
	Molecular Weight De	etermination			
	1. Determination of a freezing point met	-	non-volatile	solute by Rast method/ Beckmann	
I		the apparent degree on the different concentration		on of an electrolyte (e.g., NaCl) in ioscopy	10
	Spectrophotometry				
	1. To verify Beer – I	Lambert Law for KMr	$O_4/K_2Cr_2O_7$	and determining the concentration	1
II	of the given soluti	on of the substance fro	om absorptio	n measurement	20
	2. Determination of J	pKa values of indicato	r using spec	trophotometry.	
	3. Determination of a	chemical oxygen dema	and (COD).		

	4.	Determination of Biological oxygen demand	l (BOD).			
	Sp	ectroscopy				
	1.	1. Assignment of labelled peaks in the IR spectrum of the same compound explaining the				
		relative frequencies of the absorptions (C-H, O-H, N-H, C-O, C-N, C-X, C=C, C=O,				
		N=O, C=C, C=N stretching frequencies; cha	racteristic bending vibrations are included.			
III		Spectra to be provided).				
	2.	Assignment of labelled peaks in the ¹ H NMF				
		explaining the relative δ -values and splitting	pattern.			
	3.	Identification of simple organic compounds	by IR spectroscopy and NMR			
		spectroscopy (Spectra to be provided).				
	Ch	aromatographic Separations				
	1.	Paper chromatographic separation of followi	ing metal ions: i. Ni (II) and Co (II) ii.			
		Cu(II) and Cd(II)				
	2.	Separation of a mixture of o-and p-nitrophen	ol or o-and p-aminophenol by thin layer			
IV		Chromatography (TLC)	1 1 5 5	20		
	3.	Separation and identification of the amino ac	cids present in the given mixture by paper			
		chromatography. Reporting the Rf values	I I I I I I I I I I I I I I I I I I I			
	4.					
Sugges		Readings:				
00		5				
		ham, J., A. I. Vogel's Quantitative Chemical A d, H.H. et al.: Instrumental Methods of Analy.		anv Belmont		
(Califo	ornia, USA, 1988.		iny, Dennont,		
		ian, G.D. Analytical Chemistry, 6th Ed. John V , D.C. Exploring Chemical Analysis, 9th Ed. N	•			
		xar, S.M. Basic Concepts of Analytical Chemis		9.		
	•	, D.A. Holler F.J. and Nieman, T.A. Principle	es of Instrumental Analysis, Cengage Learn	ing India		
	Editio Mikes	n. , O. & Chalmes, R.A. <i>Laboratory Handbook o</i>	of Chromatographic & AlliedMethods, Elle	es Harwood		
Ι	Ltd. L	ondon.				
		R.V. Analytical Chemistry: Methods of separate promotion of Hindi language, course books p		University		
		gital platforms web links		omversity		
1.	https:	//www.labster.com/chemistry-virtual-labs/				
		//www.vlab.co.in/broad-area-chemical-science	<u>25</u>			
3.	<u>http:</u>	://chemcollective.org/vlabs				
This co	ourse	can be opted as an elective by the student	ts of following subjects: Chemistry in 1	2 th Class		
Suggest	ted C	ontinuous Evaluation Methods:				
Viva v		Shallous Dynamion monous.	(10 marks)			
Mock			(10 marks)			
Overa	ll per	formance	(05marks)			

Course prerequisites: To study this course, a student must have had the chemistry in class

Suggested equivalent online courses:

.....

Further Suggestions:

.....

Year	Sem.	Course Code	Paper Title	Theory/Practical	Credits
			Degree in Bachelor of Science		
3	V	B020501T	Organic Synthesis-A	Theory	4
		B020502T	Rearrangements and Chemistry of Group Elements	Theory	4
		B020503P	Qualitative Analysis	Practical	2
		B020504R	Research Project	Project	3
	VI	B020601T	Organic Synthesis-B	Theory	4
		B020602T	Chemical Energetics and Radiochemistry	Theory	4
		B020603P	Analytical Methods	Practical	2
		B020604R	Research Project	Project	3

Semester V, Paper-1 (Theory) Course Title: Organic Synthesis A

Programme: Degree in Bachelor of Science	Year: Three	Semester: V
Paper-2 Theory	Compulsory	Subject: Chemistry
Course Code: B020501T	Course Ti	tle: Organic Synthesis A

Course outcomes: Hydrocarbons are the principal constituents of petroleum and natural gas. They serve as fuels and lubricants as well as raw materials for the production of plastics, fibers, rubbers, solvents and industrial chemicals. This course will provide a broad foundation in for the synthesis of hydrocarbons. Hydroxy and carbonyl compounds are industrially important compounds The industries of plastics, fibers, petroleum and rubbers will specially recognize this course. Students will gain an understanding of which are used as solvents and raw material for synthesis of drug and other pharmaceutically important compounds.

- Synthesis and chemical properties of aliphatic and aromatic hydrocarbons
- Synthesis and chemical properties of alcohols, halides carbonyl compounds, carboxylic acids and esters
- How to design and synthesize aliphatic and aromatic hydrocarbons.
- How to convert aliphatic and aromatic hydrocarbons to other industrially important compounds
- Functional group interconversion.

.

	Credits: 4	Elective		
	Max. Marks: 25+75 Min. Passing Marks:			
	Total No. o	f Lectures- = 60		
Unit	Topics			
	Chemistry of Alkanes and Cycloalkanes		Lectures	
	A) Alkanes :Classification of carbon atom in a	lkanes, General methods of preparation, physical and	L	
	chemical properties of alkanes: Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions:			
Ι	Halogenation -relative reactivity and selectivity			
	B) Cycloalkanes: Nomenclature, methods of formation, chemical reactions, Baeyer's strain theory			
	and its limitations. Chair, Boat and Twist boat forms of cyclohexane with energy diagrams ring strain			
	in small rings, theory of strain less rings. The case of cyclopropane ring, banana bonds.			
	Chemistry of Alkenes			
	Methods of formation of alkenes, Addition to C	=C: mechanism (with evidence wherever applicable),	,	
	reactivity, regioselectivity (Markownikoff and anti-Markownikoff additions) and stereoselectivity;			
II	reactions: hydrogenation, halogenation,	n, halogenation, hydrohalogenation, hydration, oxymercuration		
	demercuration, hydroboration-oxidation, epoxidation, syn and anti-hydroxylation, ozonolysis,			
	addition of singlet and triplet carbenes; Simn	nons-Smith cyclopropanation reaction; electrophilic	;	

	addition to diene (conjugated dienes and allene); radical addition: HBr addition; mechanism of allylic and benzylic bromination in competition with brominations across C=C; use of NBS; interconversion of <i>E</i> - and <i>Z</i> - alkenes.	
III	Chemistry of Alkynes Methods of formation of alkynes, Addition to C≡C, mechanism, reactivity, regioselectivity and stereoselectivity; reactions: hydrogenation, halogenations, hydrohalogenation, hydration, oxymercuration demercuration, hydroboration-oxidation, dissolving metal reduction of alkynes (Birch); reactions of terminal alkynes by exploring its acidity; inter conversion of terminal and non- terminal alkynes.	06
IV	Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their Mechanism. Directing effects of the groups. Birch reduction, Methods of formation and chemical reactions of alkylbenzenes, alkynylbenzenes and biphenyl, naphthalene and anthracene.	10
V	Chemistry of Alcohols Classification and nomenclature, Monohydric alcohols – nomenclature, methods of formation by reduction of Aldehydes, Ketones, Carboxylic acids and Esters, Hydrogen bonding, Acidic nature, Reactions of alcohols. Dihydric alcohols nomenclature, methods of formation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc)4 and HIO ₄] and pinacol pinacolone rearrangement. Trihydric alcohols - nomenclature, methods of formation, chemical reactions	8
VI	Chemistry of Phenols : Nomenclature, structure and bonding, preparation of phenols, physical properties and acidic character, Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols – electrophilic aromatic substitution, acylation and carboxylation. Mechanisms of Fries rearrangement, Claisen rearrangement, Gatterman synthes, Hauben Hoesch reaction, Lederer-Manasse reaction and Reimer-Tiemann reaction	06
VII	Chemistry of Ethers and Epoxides : Nomenclature of ethers and methods of their formation, physical properties, Chemical reactions – cleavage and autoxidation, Ziesel's method. Synthesis of epoxides, Acid and base-catalyzed ring opening of epoxides, orientation of epoxide ring opening, reactions of Grignard and organolithium reagents with epoxides.	05
VIII	Chemistry of Organic Halides Nomenclature and classes of alkyl halides, methods of formation, chemical reactions, Mechanisms of nucleophilic substitution reactions of alkyl halides, SN ² and SN ¹ reactions with energy profile	05

	diagrams; Polyhalogen compounds : Chloroform, carbon tetrachloride; Methods of formation of aryl
	halides, nuclear and side chain reactions; The addition-elimination and the elimination-addition
	mechanisms of nucleophilic aromatic substitution reactions; Relative reactivities of alkyl halides vs
	allyl, vinyl and aryl halides, Synthesis and uses of DDT and BHC.
_	Suggested Deadings

Suggested Readings:

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003.
- 3. Carey, F. A., Guiliano, R. M. Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.
- 4. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.
- 5. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, 2nd edition, Oxford University Press, 2012.
- 6. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc.
- 7. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.
- 8. March, J. Advanced Organic Chemistry, Fourth edition, Wiley. \
- 9. Bariyar and Goyal, Organic Chemistry-II, Krishna Prakashan Media, Meerut, Third Eddition, 2019

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University **Suggested online links:**

http://heecontent.upsdc.gov.in/Home.aspx

https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm

https://nptel.ac.in/courses/104/103/104103071/#

https://nptel.ac.in/courses/104/106/104106096/

This course is compulsory for the students of following subjects: Chemistry in 12th Class

Suggested Continuous Evaluation Methods:

Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others .

01				
Assessment and presentation of Assignment	(10 marks)			
04 Unit tests (Objective): Max marks of each unit test $= 10$	(10 marks)			
(average of all 04 unit tests)				
Overall performance throughout the semester (Discipline,	(05 marks)			
participation in different activities)				
Course prerequisites: To study this course, a student must have Passed Sem-I, Theory paper				
Suggested equivalent online courses:				

.....

Further Suggestions:

.....

Semester-V Paper-2 Course Title: Rearrangements and Chemistry of Group Elements

Programm Science	e: Degree in Bachelor of	Year: T	hree	Semester: V	
Paper-2 Theory		Ε	lective	Subject: Chemi	stry
	Course Code: B020502T	Course Title: F	Rearrangem	eents and Chemistry of Group Elem	ents
function jobs in • It to • Th • Th • Of th	onal groups inter conversion. Organ production & QC departments re- relates and gives an analytical ap- nis paper also provides a det ccurrence in nature. Their pos	anic synthesis is th elated to chemical titude for synthesiz tailed knowledg ition in periodic	e most impo s, drugs, me zing various e on the e table, their	hesis of various class of organic comp ortant branch of organic chemistry which dicines, FMCG etc. industries. industrially important compounds. elements present in our surroundity physical and chemical properties ag of the s, p, d and f block element	ch provide ings, the as well a
	Credits: 4			Elective	
Max. Marks: 25+75 Min. Passing Marks:					
		Total No. of	Lectures- =	60	
Unit		Торіс	es		No. of Lecture
I	Rearrangements A detailed study of the following rearrangements: Pinacol-pinacolone, Demjanov, BenzilBensilic acid, Favorskii, Hofman, Curtius, Schmidt, Baeyer-Villiger and Fries rearrangement			6	
п	Catalysis General principles and properties of catalysts, homogenous catalysis (catalytic steps and examples) and heterogenous catalysis (catalytic steps and examples) and their industrial applications, Deactivation or regeneration of catalysts. Phase transfer catalysts, application of zeolites as catalysts. Enzyme catalysis; Michaelis-Menten equation, turn-over number.			8	
III	Chemistry of Main Group E	lements			10

s-Block Elements: Comparative study, diagonal relationship, salient features of hydrides, solvation					
	and complexation tendencies including their function in biosystems, an introduction to alkyls and				
	aryls.				
	p-Block Elements: Comparative study (including diagonal relationship) of groups 13-17 elements,				
	compounds like hydrides, oxides, oxyacids and halides of group 13-16, hydrides of boron-diborane				
	and higher boranes, borazine, borohydrides, fullerenes, carbides, fluorocarbons, silicates (structural				
	principle), tetrasulphur tetra nitride, basic properties of halogens, interhalogens and polyhalides.				
	Chemistry of Noble Gasses: Chemical properties of the noble gases, chemistry of xenon, structure				
	and bonding in xenon compounds.				
	Chemistry of Transition Elements				
	Chemistry of Elements of First Transition Series - Characteristic properties of d-block elements.				
l	Binary compounds (hydrides, carbides and oxides) of the elements of the first transition series and				
l	complexes with respect to relative stability of their oxidation states, coordination number and				
IV	geometry.	06			
	Chemistry of Elements of Second and Third Transition Series- General characteristics,				
	comparative treatment of Zr/Hf, Nb/Ta, Mo/W in respect of ionic radii, oxidation states, magnetic				
	behavior, spectral properties and stereochemistry.				
	Chemistry of Lanthanides				
V	Electronic structure, oxidation states and ionic radii and lanthanide contraction, complex formation,	4			
	occurrence and isolation, ceric ammonium sulphate and its analytical uses.				
	Chemistry of Actinides				
VI	Electronic configuration, oxidation states and magnetic properties, chemistry of separation of Np,	4			
	Pu and Am from U.				
	Metal Carbonyls				
VII	Metal carbonyls: 18-electron rule, preparation, structure and nature of bonding in the mononuclear	6			
	and dinuclea carbonyls.				
	Bioinorganic Chemistry				
	Essential and trace elements in biological processes, metalloporphyrins with special reference to				
VIII	heamoglobin and myoglobin. Biological role of alkali and alkaline earth metal ions with special	6			
	reference to Ca^{2+} . Nitrogen fixation.				
Suggested Readings:					
 Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003. 					
3. Carey, F. A., Guiliano, R. M. Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.					

Clayden, J., Greeves, N. &Warren, S. *Organic Chemistry*, 2nd edition, Oxford University Press, 2012.
 Graham Solomons, T.W., Fryhle, C. B. *Organic Chemistry*, John Wiley & Sons, Inc.

- 7. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.
- 8. March, J. Advanced Organic Chemistry, Fourth edition, Wiley.
- 9. Lee, J.D. Concise Inorganic Chemistry, Pearson Education 2010
- 10. Huheey, J.E., Keiter, E.A., Keiter, R. L., Medhi, O.K. Inorganic Chemistry, Principles of Structure and Reactivity, Pearson Education 2006
- 11. Douglas, B.E. and Mc Daniel, D.H., Concepts & Models of Inorganic Chemistry, Oxford, 1970
- 12. Shriver, D.D. & P. Atkins, Inorganic Chemistry 2nd Ed., Oxford University Press, 1994.
- 13. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications 1962.
- 14. Francis, P. G. Mathematics for Chemists, Springer, 1984
- 15. Prakash Satya, Tuli G.D., Basu S.K. Madan R.D., Advanced inorganic Chemistry, S.Chand publishing.
- 16. Bariyar and Goyal, Inorganic Chemistry-II, Krishna Prakashan Media, Meerut, Third Eddition, 2019

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University

Suggested online links:

http://heecontent.upsdc.gov.in/Home.aspx

https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm

https://nptel.ac.in/courses/104/103/104103071/#

https://swayam.gov.in/

Or

This course can be opted as an elective by the students of following subjects: Chemistry in 12th Class

Suggested Continuous Evaluation Methods:

Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others .

Assessment and presentation of Assignment	(1	10 marks)		
04 Unit tests (Objective): Max marks of each unit test $= 10$	(1	10 marks)		
(average of all 04 unit tests)				
Overall performance throughout the semester (Discipline,	(0)5 marks)		
participation in different activities)				
Course prerequisites: To study this course, a student must have Passed Sem-I, Theory paper				
Suggested equivalent online courses:				
Further Suggestions:				

Semester V, Paper-3 (Practical) Course Title: Qualitative Analysis

0	amme: Degree in helor of Science	Year: Thi	ree	Semester: V	
	Practical paper-3			Subject: Chemi	stry
Course	e Code: B020503P	Course Title	: Qualitati	ve Analysis	
Course ou	itcomes:	I			
Upon com	pletion of this course t	he students will have t	he knowledg	ge and skills to: understand the labor	atory methods
and tests re	elated to inorganic mix	stures and organic cor	npounds.		
• Ide	entification of acidic a	nd basic radicals in in	organic mix	tures	
• Se	paration of organic co	mpounds from mixtu	re		
• El	emental analysis in or	ganic compounds			
	entification of function		ompounds		
	entification of organic		I		
	-	-		T I 1	
Credits: 2 Elective					
	Max. Marks: 2	5+75		Min. Passing Marks:	
	Practical			60 h	
Unit			Topics		No of lectures
I	Inorganic Qualitative Analysis Semi micro Analysis – cation analysis, separation and identification of ions from Groups I, II, III, IV, V and VI, Anion analysis. Mixture containing 6 radicals-2 +4 or 4+ or 3+3			16	
п	Elemental analysis and identification of functional groups Detection of extra elements (N, S and halogens) and functional groups (phenolic, carboxylic, carbonyl, esters, carbohydrates, amines, amides, nitro and anilide) in simple				
	organic compounds.				
ш	Separation of Organic Mixture Analysis of an organic mixture containing two solid components using water, NaHCO ₃ , NaOH for separation and preparation of suitable derivatives			18	
IV Identification of organic compounds Identification of an organic compound through the functional group analysis, determination of melting point and preparation of suitable derivatives.			12		

Suggested Readings:

- 1. Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
- 2. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- 3. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
- 4. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.
- 5. Harris, D.C.*Exploring Chemical Analysis*, 9thEd. New York, W.H. Freeman, 2016.
- 6. Khopkar, S.M. *Basic Concepts of Analytical Chemistry*. New Age International Publisher, 2009.

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University

Suggestive digital platforms web links

- 4. https://www.labster.com/chemistry-virtual-labs/
- 5. https://www.vlab.co.in/broad-area-chemical-sciences
- 1. <u>http://chemcollective.org/vlabs</u>

This course can be opted as an elective by the students of following subjects: Chemistry in 12 th Class				
-				
Suggested Continuous Evaluation Me	thods:			
Viva voce	(10 marks)			
Mock test	(10 marks)			
Overall performance	(05marks)			
Course prerequisites: To study this	course, a student must have Opted Sem-V Theory Ppaer-1 &2			
Suggested equivalent online courses:				
Further Suggestions:				

Semester-VI Paper-1 Course Title: Organic Synthesis B

Programme Science	e: Degree in Bachelor of	Year: Three	Semester: VI		
Pape	er-1 Theory	Compulsory	Subject: Che	mistry	
	Course Code:B020601T Course Title: Organic Synthesis B				
 Course outcomes: This paper provides detailed knowledge of synthesis of various class of organic comp functional groups inter conversion. Organic synthesis is the most important branch of organic chemistry whic jobs in production & QC departments related to chemicals, drugs, medicines, FMCG etc. industries. The study of natural products and heterocyclic compounds offers an excellent strategy toward identify biological probes for a number of diseases. Historically, natural products have played an important redevelopment of pharmaceutical drugs for a number of diseases including cancer and infection. It relates and gives an analytical aptitude for synthesizing various industrially important compounds. Learn the different types of alkaloids, & terpenes etc and their chemistry and medicinal importance. Explain the importance of natural compounds as lead molecules for new drug discovery. 					
	Credits: 4 Elective				
	Max. Marks: 25+75		Min. Passing Marks:		
		Total No. of Lectures- =	60		
Unit		Topics		No. of Lectures	
 Reagents in Organic Synthesis A detailed study of the following reagents in organic transformations I Oxidation with DDQ, CAN and SeO₂, mCPBA, Jones Oxidation, PCC, PDC, PFC, Collin's reagent and ruthenium tetraoxide. Reduction with NaBH₄, LiAlH₄, Meerwein-Ponndorf-Verley (MPV) reduction, Wilkinson's catalyst, Birch reduction, DIBAL-H 					

[Organometallic Compounds-Organomagnesium compounds: the Grignard reagents, formation,	
II	structure and chemical reactions. Organozinc compounds: formation and chemical reactions. Organolithium compounds: formation and chemical reactions.	
ш	Chemistry of Aldehydes and ketones: Nomenclature and structure of the carbonyl groups, synthesis of aldehydes and ketones with particular reference to the synthesis of aldehydes from acid chlorides, synthesis of aldehydes and ketones uses 1, 3-dithianes, synthesis of ketones from nitrites and from carboxylic acids, Physical properties. Mechanism of nucleophillic additions to carbonyl group with particular emphasis on benzoin, aldol, Perkin and Knoevenagel condensations, Condensation with ammonia and its derivatives. Wittig reaction, Mannich reaction. Oxidation of aldehydes, Cannizzaro reaction, MPV, Clemmensen, Wolff-Kishner, LiAlH ₄ and NaBH ₄ reductions. Halogenation of enolizable ketones An introduction to α , β unsaturated aldehydes and Ketones.	10
IV	Carboxylic acids and their Functional Derivatives Nomenclature and classification of aliphatic and aromatic carboxylic acids. Preparation and reactions. Acidity (effect of substituents on acidity) and salt formation, Reactions: Mechanism of reduction, substitution in alkyl or aryl group. Preparation and properties of dicarboxylic acids such as oxalic, malonic, succinic, glutaric, adipic and phthalic acids and unsaturated carboxylic acids such as acrylic, crotonic and cinnamic acids, Reactions: Action of heat on hydroxy and amino acids, and saturated dicarboxylic acids, stereospecific addition to maleic and fumaric acids. Preparation and reactions of acid chlorides, acid anhydrides, amides and esters, acid and alkaline hydrolysis of esters, trans-esterification.	8
V	Organic Synthesis via Enolates Acidity of α-hydrogens, alkylation of diethyl malonate and ethyl acetoacetate, Synthesis of ethyl acetoacetate: the Claisen condensation, Keto-enol tautomerism of ethyl acetoacetate. Alkylation of 1, 3-dithianes, Alkylation and acylation of enamines.	
VI	Organic Compounds of Nitrogen- Preparation of nitroalkanes and nitroarenes, Chemical reactions of nitroalkanes. Mechanisms of nucleophilic substitution in nitroarenes and their reductions in acidic, neutral and alkaline media, Picric acid. Halonitroarenes: reactivity, Structure and nomenclature of amines, physical properties, Stereochemistry of amines, Separation of a mixture of primary, secondary and tertiary amines. Structural features effecting basicity of amines. Amine salts as phase-transfer catalysts, Preparation of alkyl and aryl amines (reduction of nitro compounds, nitrities), reductive amination of aldehydic and ketonic compounds, Gabriel-phthalimide reaction, Hofmann bromamide reaction. Reactions of amines, electrophilic aromatic	10

	substituton in aryl amines, reactions of amines with nitrous acid. Synthetic transformations of aryl	
	diazonium salts, azo coupling	
	Heterocyclic Chemistry	
	Molecular orbital picture and aromatic characteristics of pyrrole, furan, thiophene and pyridine,	
	Methods of synthesis and chemical reactions with particular emphasis on the mechanism of	
	electrophilic substitution, Mechanism of nucleophilic substitution reaction in pyridine derivatives,	
VII	Comparison of basicity of pyridine, piperidine and pyrrole. Introduction to condensed five and six	10
	membered heterocycles, Preparation and reactions of indole, quinoline and isoquinoline with	
	special reference to Fisher indole synthesis, Skraup synthesis and Bischler-Nepieralski synthesis,	
	Mechanism of electrophilc substitution reactions of indole, quinoline and isoquinoline	
	Natural Products	
VIII	Alkaloids & Terpenes: Natural occurrence, General structural features, their physiological action, Hoffmann's exhaustive methylation, Emde's modification; Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine. Natural Occurrence and classification of terpenes, isoprene rule.	7
 18. Syl 19. Ca 20. Lo 21. Cla 22. Gra 23. Sm 24. M 25. Ac 26. Fir 27. Fir 28. Pro 29. Sir 	 brrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Eductions, R. N. & Boyd, R. N. Organic Chemistry, Pearson Education, 2003. brey, F. A., Guiliano, R. M.Organic Chemistry, Eighth edition, McGraw Hill Education, 2012. budon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008. byden, J., Greeves, N. & Warren, S. Organic Chemistry, John Wiley & Sons, Inc. bith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited. barch, J. Advanced Organic Chemistry, Fourth edition, Wiley. beson, R.M. Introduction to the Chemistry of Heterocyclic compounds, John Welly& Sons Par, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Eductionar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural boducts), Dorling Kindersley (India) Pvt. Ltd. (Pearson Eduction, J., Singh, J., Singh, J. Natural Product Chemistry, Pragati Prakashan (2010). baric Chemistry III, Krishna Prakashan Media, Meerut, Third Eddition, 2019 	(1976).
Suggested <u>http://heec</u> https://npt <u>https://ww</u> https://npt	he promotion of Hindi language, course books published in Hindi may be prescribed by the Univers online links: ontent.upsdc.gov.in/Home.aspx el.ac.in/courses/104/103/104103111/ w2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm el.ac.in/courses/104/103/104103071/# yam.gov.in/	sity
This cou	rse compulsory for the students of following subjects: Chemistry in 12 th Class	
Suggeste	d Continuous Evoluction Mathada	
	d Continuous Evaluation Methods: can be evaluated on the basis of score obtained in a mid-term exam, together with the perfe	ormance

Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performanc of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others .

Or			
Assessment and presentation of Assignment	(10 marks)		
04 Unit tests (Objective): Max marks of each unit test $= 10$	(10 marks)		
(average of all 04 unit tests)			
Overall performance throughout the semester (Discipline,	(05 marks)		
participation in different activities)			
Course prerequisites: To study this course, a student must have Passed Sem-V Theory paper-1			
Suggested equivalent online courses:			
Further Suggestions:			

Semester-VI Paper-2 Course Title: Chemical Energetics and Radio Chemistry

Programr Science	ne: Degre	ee in Bachelor of	Year: Three	Semester: VI	
	Paper-2	Theory	Elective	Subject: Chemi	istry
	Course Code: B020602T Course Title: Chemical Energetics and Radio Chemistr			ry	
therm	odynamic	s and its applications, j	*	students should be able to describ two component system, electro chem rements	
	Credits: 4 Elective				
Max. Marks: 25+75			Min. Passing Marks:		
	Total No. of Lectures- = 60				
Unit	t Topics			No. of Lectures	
Ι	 Thermodynamics-1: First Law of Thermodynamics : Statement , definition of internal energy and enthalpy. Heat capacity ,heat capacities at constant volume and pressure and their relationship. Joule's law – Joule-Thomson coefficient and inversion temperature . Calculation of w, q, dU & dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process. Thermochemistry: Standard state, standard enthalpy of formation – Hess's law of heat summation and its applications. Heat of reaction at constant pressure and at constant volume . Enthalpy of neutralization . Bond dissociation energy and its calculation from thermo-chemical data , temperature dependence of enthalpy. Kirchhoff's equation. 			8	
п	II Thermodynamics II		10		

	Second Law of Thermodynamics, Need for the law, different statements of the law, Carnot cycle		
	and its efficiency. Carnot theorem. Thermodynamic scale of temperature.		
	Concept of Entropy, Entropy as a state function, entropy as a function of V & T, entropy as a		
	function of P & T, entropy change in physical change, Clausius inequality, entropy as a criteria		
	spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases. Gibbs and		
	Helmholtz Functions		
	Gibbs function (G) and Helmhotz function (A) as thermodynamic quantities. A & G as criteria for		
	thermodynamic equilibrium and spontaneity, their advantage over entropy change, Variation of G		
	and A with P, V and T.		
	Third Law of Thermodynamics ; Nernst heat theorem , statement and concept of residual entropy.		
	Nernst distribution law – Thermodynamic derivation, applications .		
	Electrochemistry: Electrical transport:- Conduction in metals and in electrolyte solutions, specific		
	conductance molar and equivalent conductance, measurement of equivalent conductance, variation		
	of molar, equivalent and specific conductances with dilution. Migration of ions and Kohlrausch law		
ш	, Arrhenius theory of electrolyte dissociation and its limitations. Weak and strong electrolytes .	8	
	Ostwald's dilution law, its uses and limitations . Debye-Huckel-Onsager equation for strong		
	electrolytes (elementary treatment only) . Transport number, definition and determination by Hittorf		
	method and moving boundary method.		
	Ionic Equilibrium: Electrode reactions, Nernst equation, derivation of cell EMF and single electrode		
	potential, standard hydrogen electrode-reference electrodes and their applications, standard electrode		
	potential, sign conventions, Electrolytic and Galvanic cells–Reversible and irreversible cells,		
IV	conventional representation of electrochemical cells. EMF of a cell and its measurement. Definition	10	
	of pH and pKa, determination of pH using hydrogen, quinhydrone and glass electrodes by		
	potentiometric methods. Buffers – Mechanism of buffer action, Henderson-Hazel equation,		
	application of buffer solution. Hydrolysis of salts		
	Photo Chemistry: Interaction of radiation with matter, difference between thermal and		
	photochemical processes . Laws of photochemistry: Grothus- Drapper law, Stark-Einstein law,		
	Jablonski diagram depicting various processes occurring in the excited state, qualitative description		
V	of fluorescence, phosphorescence, non-radiative processes (internal conversion, intersystem	04	
	crossing), quantum yield, photosensitized reactions – energy transfer processes (simple examples),		
	kinetics of photochemical reaction.		
	r		

VI	Colligative Properties- Ideal and non-ideal solutions, methods of expressing concentrations of solutions, activity and activity coefficient. Dilute solution, colligative properties, Raoult's law, relative lowering of vapour pressure, molecular weight determination, Osmosis, law of osmotic pressure and its measurement, determination of molecular weight from osmotic pressure, Elevation of boiling point and depression of freezing, Thermodynamic derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods for determining various colligative properties. Abnormal molar mass, Van't Hoff factor, Colligative properties of degree of dissociation and association of solutes.	6	
VI I	 Surface Chemistry Adsorption: Physical and chemical adsorption; Freundlich and Langmuir adsorption isotherms; multilayer adsorption and BET isotherm (no derivation required); Gibbs adsorption isotherm and surface excess; Heterogenous catalysis (single reactant); Colloids:Lyophobic and lyophilic sols, Origin of charge and stability of lyophobic colloids, Coagulation and Schultz-Hardy rule, Zeta potential and Stern double layer (qualitative idea), Tyndall effect; Electrokinetic phenomena (qualitative idea only); Stability of colloids and zeta potential; Micelle formation 		
VI II	Radiochemistry Natural and induced radioactivity; radioactive decay-a-decay, b-decay, g-decay; neutrom emission, positrom emission, electron capture; unit of radioactivity (Curie); half life period; Geiger-Nuttal rule, radioactive displacement law, radioactive series. Measurement of radioactivity: ionization chamber, Geiger counters, scintillation counters. Applications: energy tapping, dating of objects, neutron activation analysis, isotopic labelling studies, nuclear medicine-99mTc radiopharmaceuticals	07	
 Suggested Readings: Foye, W.O., Lemke, T.L. & William, D.A.: Principles of Medicinal Chemistry, 4th ed., BI. Waverly Pvt. Ltd. New Delhi. Peter Atkins & Julio De Paula, Physical Chemistry 9th Ed., Oxford University Press (2010). Metz, C. R. Physical Chemistry 2nd Ed., Tata McGraw-Hill (2009). Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 13 (2006). Ball, D. W. Physical Chemistry Thomson Press, India (2007). Castellan, G. W. Physical Chemistry 4th Edn. Narosa (2004). Allen Bard ,J Larry Faulkner R, Fundamentals of Electrochemical methods –fundamentals and applications ,new York John ,Wiley &sons , 2001 H. J. Arnikar, <i>Essentials of Nuclear Chemistry</i>, 4th ed., New Age International, New Delhi, 1995. Bariyar,and Goyal, Physical Chemistry-II, Krishna Prakashan Media, Meerut , Third Eddition, 2019 Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University Suggested online links: http://heecontent.upsdc.gov.in/Home.aspx https://www.coursera.org/learn/physical-chemistry https://www.openlearn/physical-chemistry https://www.openlearning.com/courses/introduction-to-physical-chemistry/			

Suggested Continuous Evaluation Methods:	
Students can be evaluated on the basis of score obtained in a mid-	
of other activities which can include short exams, in-class or on-lin	e tests, home assignments, group
liscussions or oral presentations, among others .	
Or	
Assessment and presentation of Assignment	(10 marks)
04 Unit tests (Objective): Max marks of each unit test $= 10$	(10 marks)
(average of all 04 unit tests)	
Overall performance throughout the semester (Discipline,	(05 marks)
participation in different activities)	
Course prerequisites: To study this course, a student must have h	ad the chemistry in class 12 th , Physics in
12 th	
Suggested equivalent online courses:	

Semester VI, Paper-3 (Practical) Course Title: Analytical Methods

Programme: Degree in Bachelor of Science		Year: Thr	ee	Semester: IV	
	Practical paper-3			Subject: Chemi	istry
Cours	se Code: B020603P	Course Title	: Analytica	al Methods	
Course Ou	tcomes: Upon success	ful completion of this	course stude	nts should be able to quantify the pr	oduct obtained
through gra	avimetric method; dete	rmination of \mathbf{R}_f value	s and identif	fication of organic compounds thro	ugh paper and
thin layer c	hromatography laborat	tory techniques: perfor	rm thermo cl	nemical reactions	
	Credits: 2			Elective	
	Max. Marks: 2	5+75		Min. Passing Marks:	
	Practical			60 h	
Unit		Т	opics		No of Lectures
I	 Gravimetric Analysis 1. Analysis of Cu as CuSCN, 2. Analysis of Ni as Ni (dimethylgloxime) 3. Analysis of Ba as BaSO₄. 			30	
п	Paper Chromatography Ascending and Circular. Determination of Rf values and identification of organic compounds: Separation of a mixture of phenylalanine and glycine. Alanine and aspartic acid Leucine and glutamic acid. Spray reagent – ninhydrin. Separation of a mixture of D, L – alanine, glycine, and L-leucine using n-butanol:acetic acid: water (4:1:5). Spray reagent			8	

	– ninhydrin. Separation of monosaccharaides – a	mixture of D- galactose and D -fructose	
	using n- butanol: acetone: water (4:5:1). Spray rea	agent – aniline hydrogen phthalate	
ш	IIIThin Layer Chromatography Determination of Rf values and identification of organic compounds:Separation of green leaf pigments (spinach leaves may be used) Preparation of separation of 2,4- dinitrophenylhydrazones of acetone, 2-butanone, hexan-2, and 3-one using toluene and light petroleum (40:60) Separation of a mixture of dyes using cyclohexane and ethyl acetate (8.5:1.5)		
IV	 Thermochemistry 1. To determine the solubility of benzoic acid at different temperatures and to determine ΔH of the dissolution process 2. To determine the enthalpy of neutralization of a weak acid/weak base versus strong base/strong acid and determine the enthalpy of ionization of the weak acid/weak base 3. To determine the enthalpy of solution of solid calcium chloride and calculate the lattice energy of calcium chloride from its enthalpy data using Born-Haber cycle 		
1. Skc coll 2. La Note : For th Suggestive 4. <u>htt</u> 5. <u>httr</u>	d Readings: bog .D.A., West.D.M and Holler .F.J., "Analytical lege publishing, Philadelphia,(2010). rry Hargis.G" Analytical Chemistry: Principles and the promotion of Hindi language, course books public digital platforms web links ps://www.labster.com/chemistry-virtual-labs/ ps://www.vlab.co.in/broad-area-chemical-sciences p://chemcollective.org/vlabs	Techniques" Pearson©(1988)	
This cour	se can be opted as an elective by the students of	f following subjects: Chemistry in 1	2 th Class
Suggested	Continuous Evaluation Methods:		
Viva voce		(10 marks)	
Mock test		marks)	
	erformance (05) rerequisites: To study this course, a student mu	marks) ust have had the chemistry in 12 th el	0.00
Suggested	l equivalent online courses:		